const CryptoJS = require("crypto-js"); var RSA = {}; (function (exports) { var window = {}; var navigator = {}; if (!Array.prototype.forEach) { Array.prototype.forEach = function (callback, thisArg) { var T, k; if (this == null) { throw new TypeError(' this is null or not defined'); } var O = Object(this); var len = O.length >>> 0; if (typeof callback !== "function") { throw new TypeError(callback + ' is not a function'); } if (arguments.length > 1) { T = thisArg; } k = 0; while (k < len) { var kValue; if (k in O) { kValue = O[k]; callback.call(T, kValue, k, O); } k++; } }; }; // Copyright (c) 2005 Tom Wu // All Rights Reserved. // See "LICENSE" for details. // Basic JavaScript BN library - subset useful for RSA encryption. // Bits per digit var dbits; // JavaScript engine analysis var canary = 0xdeadbeefcafe; var j_lm = ((canary & 0xffffff) == 0xefcafe); // (public) Constructor function BigInteger(a, b, c) { if (a != null) if ("number" == typeof a) this.fromNumber(a, b, c); else if (b == null && "string" != typeof a) this.fromString(a, 256); else this.fromString(a, b); } // return new, unset BigInteger function nbi() { return new BigInteger(null); } // am: Compute w_j += (x*this_i), propagate carries, // c is initial carry, returns final carry. // c < 3*dvalue, x < 2*dvalue, this_i < dvalue // We need to select the fastest one that works in this environment. // am1: use a single mult and divide to get the high bits, // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) function am1(i, x, w, j, c, n) { while (--n >= 0) { var v = x * this[i++] + w[j] + c; c = Math.floor(v / 0x4000000); w[j++] = v & 0x3ffffff; } return c; } // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function am2(i, x, w, j, c, n) { var xl = x & 0x7fff, xh = x >> 15; while (--n >= 0) { var l = this[i] & 0x7fff; var h = this[i++] >> 15; var m = xh * l + h * xl; l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff); c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30); w[j++] = l & 0x3fffffff; } return c; } // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. function am3(i, x, w, j, c, n) { var xl = x & 0x3fff, xh = x >> 14; while (--n >= 0) { var l = this[i] & 0x3fff; var h = this[i++] >> 14; var m = xh * l + h * xl; l = xl * l + ((m & 0x3fff) << 14) + w[j] + c; c = (l >> 28) + (m >> 14) + xh * h; w[j++] = l & 0xfffffff; } return c; } if (j_lm && (navigator.appName == "Microsoft Internet Explorer")) { BigInteger.prototype.am = am2; dbits = 30; } else if (j_lm && (navigator.appName != "Netscape")) { BigInteger.prototype.am = am1; dbits = 26; } else { // Mozilla/Netscape seems to prefer am3 BigInteger.prototype.am = am3; dbits = 28; } BigInteger.prototype.DB = dbits; BigInteger.prototype.DM = ((1 << dbits) - 1); BigInteger.prototype.DV = (1 << dbits); var BI_FP = 52; BigInteger.prototype.FV = Math.pow(2, BI_FP); BigInteger.prototype.F1 = BI_FP - dbits; BigInteger.prototype.F2 = 2 * dbits - BI_FP; // Digit conversions var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; var BI_RC = new Array(); var rr, vv; rr = "0".charCodeAt(0); for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; rr = "a".charCodeAt(0); for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; rr = "A".charCodeAt(0); for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; function int2char(n) { return BI_RM.charAt(n); } function intAt(s, i) { var c = BI_RC[s.charCodeAt(i)]; return (c == null) ? -1 : c; } // (protected) copy this to r function bnpCopyTo(r) { for (var i = this.t - 1; i >= 0; --i) r[i] = this[i]; r.t = this.t; r.s = this.s; } // (protected) set from integer value x, -DV <= x < DV function bnpFromInt(x) { this.t = 1; this.s = (x < 0) ? -1 : 0; if (x > 0) this[0] = x; else if (x < -1) this[0] = x + this.DV; else this.t = 0; } // return bigint initialized to value function nbv(i) { var r = nbi(); r.fromInt(i); return r; } // (protected) set from string and radix function bnpFromString(s, b) { var k; if (b == 16) k = 4; else if (b == 8) k = 3; else if (b == 256) k = 8; // byte array else if (b == 2) k = 1; else if (b == 32) k = 5; else if (b == 4) k = 2; else { this.fromRadix(s, b); return; } this.t = 0; this.s = 0; var i = s.length, mi = false, sh = 0; while (--i >= 0) { var x = (k == 8) ? s[i] & 0xff : intAt(s, i); if (x < 0) { if (s.charAt(i) == "-") mi = true; continue; } mi = false; if (sh == 0) this[this.t++] = x; else if (sh + k > this.DB) { this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh; this[this.t++] = (x >> (this.DB - sh)); } else this[this.t - 1] |= x << sh; sh += k; if (sh >= this.DB) sh -= this.DB; } if (k == 8 && (s[0] & 0x80) != 0) { this.s = -1; if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh; } this.clamp(); if (mi) BigInteger.ZERO.subTo(this, this); } // (protected) clamp off excess high words function bnpClamp() { var c = this.s & this.DM; while (this.t > 0 && this[this.t - 1] == c)--this.t; } // (public) return string representation in given radix function bnToString(b) { if (this.s < 0) return "-" + this.negate().toString(b); var k; if (b == 16) k = 4; else if (b == 8) k = 3; else if (b == 2) k = 1; else if (b == 32) k = 5; else if (b == 4) k = 2; else return this.toRadix(b); var km = (1 << k) - 1, d, m = false, r = "", i = this.t; var p = this.DB - (i * this.DB) % k; if (i-- > 0) { if (p < this.DB && (d = this[i] >> p) > 0) { m = true; r = int2char(d); } while (i >= 0) { if (p < k) { d = (this[i] & ((1 << p) - 1)) << (k - p); d |= this[--i] >> (p += this.DB - k); } else { d = (this[i] >> (p -= k)) & km; if (p <= 0) { p += this.DB; --i; } } if (d > 0) m = true; if (m) r += int2char(d); } } return m ? r : "0"; } // (public) -this function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this, r); return r; } // (public) |this| function bnAbs() { return (this.s < 0) ? this.negate() : this; } // (public) return + if this > a, - if this < a, 0 if equal function bnCompareTo(a) { var r = this.s - a.s; if (r != 0) return r; var i = this.t; r = i - a.t; if (r != 0) return (this.s < 0) ? -r : r; while (--i >= 0) if ((r = this[i] - a[i]) != 0) return r; return 0; } // returns bit length of the integer x function nbits(x) { var r = 1, t; if ((t = x >>> 16) != 0) { x = t; r += 16; } if ((t = x >> 8) != 0) { x = t; r += 8; } if ((t = x >> 4) != 0) { x = t; r += 4; } if ((t = x >> 2) != 0) { x = t; r += 2; } if ((t = x >> 1) != 0) { x = t; r += 1; } return r; } // (public) return the number of bits in "this" function bnBitLength() { if (this.t <= 0) return 0; return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM)); } // (protected) r = this << n*DB function bnpDLShiftTo(n, r) { var i; for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i]; for (i = n - 1; i >= 0; --i) r[i] = 0; r.t = this.t + n; r.s = this.s; } // (protected) r = this >> n*DB function bnpDRShiftTo(n, r) { for (var i = n; i < this.t; ++i) r[i - n] = this[i]; r.t = Math.max(this.t - n, 0); r.s = this.s; } // (protected) r = this << n function bnpLShiftTo(n, r) { var bs = n % this.DB; var cbs = this.DB - bs; var bm = (1 << cbs) - 1; var ds = Math.floor(n / this.DB), c = (this.s << bs) & this.DM, i; for (i = this.t - 1; i >= 0; --i) { r[i + ds + 1] = (this[i] >> cbs) | c; c = (this[i] & bm) << bs; } for (i = ds - 1; i >= 0; --i) r[i] = 0; r[ds] = c; r.t = this.t + ds + 1; r.s = this.s; r.clamp(); } // (protected) r = this >> n function bnpRShiftTo(n, r) { r.s = this.s; var ds = Math.floor(n / this.DB); if (ds >= this.t) { r.t = 0; return; } var bs = n % this.DB; var cbs = this.DB - bs; var bm = (1 << bs) - 1; r[0] = this[ds] >> bs; for (var i = ds + 1; i < this.t; ++i) { r[i - ds - 1] |= (this[i] & bm) << cbs; r[i - ds] = this[i] >> bs; } if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs; r.t = this.t - ds; r.clamp(); } // (protected) r = this - a function bnpSubTo(a, r) { var i = 0, c = 0, m = Math.min(a.t, this.t); while (i < m) { c += this[i] - a[i]; r[i++] = c & this.DM; c >>= this.DB; } if (a.t < this.t) { c -= a.s; while (i < this.t) { c += this[i]; r[i++] = c & this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while (i < a.t) { c -= a[i]; r[i++] = c & this.DM; c >>= this.DB; } c -= a.s; } r.s = (c < 0) ? -1 : 0; if (c < -1) r[i++] = this.DV + c; else if (c > 0) r[i++] = c; r.t = i; r.clamp(); } // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. function bnpMultiplyTo(a, r) { var x = this.abs(), y = a.abs(); var i = x.t; r.t = i + y.t; while (--i >= 0) r[i] = 0; for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t); r.s = 0; r.clamp(); if (this.s != a.s) BigInteger.ZERO.subTo(r, r); } // (protected) r = this^2, r != this (HAC 14.16) function bnpSquareTo(r) { var x = this.abs(); var i = r.t = 2 * x.t; while (--i >= 0) r[i] = 0; for (i = 0; i < x.t - 1; ++i) { var c = x.am(i, x[i], r, 2 * i, 0, 1); if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) { r[i + x.t] -= x.DV; r[i + x.t + 1] = 1; } } if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1); r.s = 0; r.clamp(); } // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. function bnpDivRemTo(m, q, r) { var pm = m.abs(); if (pm.t <= 0) return; var pt = this.abs(); if (pt.t < pm.t) { if (q != null) q.fromInt(0); if (r != null) this.copyTo(r); return; } if (r == null) r = nbi(); var y = nbi(), ts = this.s, ms = m.s; var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus if (nsh > 0) { pm.lShiftTo(nsh, y); pt.lShiftTo(nsh, r); } else { pm.copyTo(y); pt.copyTo(r); } var ys = y.t; var y0 = y[ys - 1]; if (y0 == 0) return; var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0); var d1 = this.FV / yt, d2 = (1 << this.F1) / yt, e = 1 << this.F2; var i = r.t, j = i - ys, t = (q == null) ? nbi() : q; y.dlShiftTo(j, t); if (r.compareTo(t) >= 0) { r[r.t++] = 1; r.subTo(t, r); } BigInteger.ONE.dlShiftTo(ys, t); t.subTo(y, y); // "negative" y so we can replace sub with am later while (y.t < ys) y[y.t++] = 0; while (--j >= 0) { // Estimate quotient digit var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2); if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out y.dlShiftTo(j, t); r.subTo(t, r); while (r[i] < --qd) r.subTo(t, r); } } if (q != null) { r.drShiftTo(ys, q); if (ts != ms) BigInteger.ZERO.subTo(q, q); } r.t = ys; r.clamp(); if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder if (ts < 0) BigInteger.ZERO.subTo(r, r); } // (public) this mod a function bnMod(a) { var r = nbi(); this.abs().divRemTo(a, null, r); if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r); return r; } // Modular reduction using "classic" algorithm function Classic(m) { this.m = m; } function cConvert(x) { if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); else return x; } function cRevert(x) { return x; } function cReduce(x) { x.divRemTo(this.m, null, x); } function cMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r); } function cSqrTo(x, r) { x.squareTo(r); this.reduce(r); } Classic.prototype.convert = cConvert; Classic.prototype.revert = cRevert; Classic.prototype.reduce = cReduce; Classic.prototype.mulTo = cMulTo; Classic.prototype.sqrTo = cSqrTo; // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function bnpInvDigit() { if (this.t < 1) return 0; var x = this[0]; if ((x & 1) == 0) return 0; var y = x & 3; // y == 1/x mod 2^2 y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4 y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8 y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV return (y > 0) ? this.DV - y : -y; } // Montgomery reduction function Montgomery(m) { this.m = m; this.mp = m.invDigit(); this.mpl = this.mp & 0x7fff; this.mph = this.mp >> 15; this.um = (1 << (m.DB - 15)) - 1; this.mt2 = 2 * m.t; } // xR mod m function montConvert(x) { var r = nbi(); x.abs().dlShiftTo(this.m.t, r); r.divRemTo(this.m, null, r); if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r); return r; } // x/R mod m function montRevert(x) { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } // x = x/R mod m (HAC 14.32) function montReduce(x) { while (x.t <= this.mt2) // pad x so am has enough room later x[x.t++] = 0; for (var i = 0; i < this.m.t; ++i) { // faster way of calculating u0 = x[i]*mp mod DV var j = x[i] & 0x7fff; var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM; // use am to combine the multiply-shift-add into one call j = i + this.m.t; x[j] += this.m.am(0, u0, x, i, 0, this.m.t); // propagate carry while (x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } } x.clamp(); x.drShiftTo(this.m.t, x); if (x.compareTo(this.m) >= 0) x.subTo(this.m, x); } // r = "x^2/R mod m"; x != r function montSqrTo(x, r) { x.squareTo(r); this.reduce(r); } // r = "xy/R mod m"; x,y != r function montMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r); } Montgomery.prototype.convert = montConvert; Montgomery.prototype.revert = montRevert; Montgomery.prototype.reduce = montReduce; Montgomery.prototype.mulTo = montMulTo; Montgomery.prototype.sqrTo = montSqrTo; // (protected) true iff this is even function bnpIsEven() { return ((this.t > 0) ? (this[0] & 1) : this.s) == 0; } // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) function bnpExp(e, z) { if (e > 0xffffffff || e < 1) return BigInteger.ONE; var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e) - 1; g.copyTo(r); while (--i >= 0) { z.sqrTo(r, r2); if ((e & (1 << i)) > 0) z.mulTo(r2, g, r); else { var t = r; r = r2; r2 = t; } } return z.revert(r); } // (public) this^e % m, 0 <= e < 2^32 function bnModPowInt(e, m) { var z; if (e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); return this.exp(e, z); } // protected BigInteger.prototype.copyTo = bnpCopyTo; BigInteger.prototype.fromInt = bnpFromInt; BigInteger.prototype.fromString = bnpFromString; BigInteger.prototype.clamp = bnpClamp; BigInteger.prototype.dlShiftTo = bnpDLShiftTo; BigInteger.prototype.drShiftTo = bnpDRShiftTo; BigInteger.prototype.lShiftTo = bnpLShiftTo; BigInteger.prototype.rShiftTo = bnpRShiftTo; BigInteger.prototype.subTo = bnpSubTo; BigInteger.prototype.multiplyTo = bnpMultiplyTo; BigInteger.prototype.squareTo = bnpSquareTo; BigInteger.prototype.divRemTo = bnpDivRemTo; BigInteger.prototype.invDigit = bnpInvDigit; BigInteger.prototype.isEven = bnpIsEven; BigInteger.prototype.exp = bnpExp; // public BigInteger.prototype.toString = bnToString; BigInteger.prototype.negate = bnNegate; BigInteger.prototype.abs = bnAbs; BigInteger.prototype.compareTo = bnCompareTo; BigInteger.prototype.bitLength = bnBitLength; BigInteger.prototype.mod = bnMod; BigInteger.prototype.modPowInt = bnModPowInt; // "constants" BigInteger.ZERO = nbv(0); BigInteger.ONE = nbv(1); // Copyright (c) 2005-2009 Tom Wu // All Rights Reserved. // See "LICENSE" for details. // Extended JavaScript BN functions, required for RSA private ops. // Version 1.1: new BigInteger("0", 10) returns "proper" zero // Version 1.2: square() API, isProbablePrime fix // (public) function bnClone() { var r = nbi(); this.copyTo(r); return r; } // (public) return value as integer function bnIntValue() { if (this.s < 0) { if (this.t == 1) return this[0] - this.DV; else if (this.t == 0) return -1; } else if (this.t == 1) return this[0]; else if (this.t == 0) return 0; // assumes 16 < DB < 32 return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0]; } // (public) return value as byte function bnByteValue() { return (this.t == 0) ? this.s : (this[0] << 24) >> 24; } // (public) return value as short (assumes DB>=16) function bnShortValue() { return (this.t == 0) ? this.s : (this[0] << 16) >> 16; } // (protected) return x s.t. r^x < DV function bnpChunkSize(r) { return Math.floor(Math.LN2 * this.DB / Math.log(r)); } // (public) 0 if this == 0, 1 if this > 0 function bnSigNum() { if (this.s < 0) return -1; else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; else return 1; } // (protected) convert to radix string function bnpToRadix(b) { if (b == null) b = 10; if (this.signum() == 0 || b < 2 || b > 36) return "0"; var cs = this.chunkSize(b); var a = Math.pow(b, cs); var d = nbv(a), y = nbi(), z = nbi(), r = ""; this.divRemTo(d, y, z); while (y.signum() > 0) { r = (a + z.intValue()).toString(b).substr(1) + r; y.divRemTo(d, y, z); } return z.intValue().toString(b) + r; } // (protected) convert from radix string function bnpFromRadix(s, b) { this.fromInt(0); if (b == null) b = 10; var cs = this.chunkSize(b); var d = Math.pow(b, cs), mi = false, j = 0, w = 0; for (var i = 0; i < s.length; ++i) { var x = intAt(s, i); if (x < 0) { if (s.charAt(i) == "-" && this.signum() == 0) mi = true; continue; } w = b * w + x; if (++j >= cs) { this.dMultiply(d); this.dAddOffset(w, 0); j = 0; w = 0; } } if (j > 0) { this.dMultiply(Math.pow(b, j)); this.dAddOffset(w, 0); } if (mi) BigInteger.ZERO.subTo(this, this); } // (protected) alternate constructor function bnpFromNumber(a, b, c) { if ("number" == typeof b) { // new BigInteger(int,int,RNG) if (a < 2) this.fromInt(1); else { this.fromNumber(a, c); if (!this.testBit(a - 1)) // force MSB set this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this); if (this.isEven()) this.dAddOffset(1, 0); // force odd while (!this.isProbablePrime(b)) { this.dAddOffset(2, 0); if (this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a - 1), this); } } } else { // new BigInteger(int,RNG) var x = new Array(), t = a & 7; x.length = (a >> 3) + 1; b.nextBytes(x); if (t > 0) x[0] &= ((1 << t) - 1); else x[0] = 0; this.fromString(x, 256); } } // (public) convert to bigendian byte array function bnToByteArray() { var i = this.t, r = new Array(); r[0] = this.s; var p = this.DB - (i * this.DB) % 8, d, k = 0; if (i-- > 0) { if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p) r[k++] = d | (this.s << (this.DB - p)); while (i >= 0) { if (p < 8) { d = (this[i] & ((1 << p) - 1)) << (8 - p); d |= this[--i] >> (p += this.DB - 8); } else { d = (this[i] >> (p -= 8)) & 0xff; if (p <= 0) { p += this.DB; --i; } } if ((d & 0x80) != 0) d |= -256; if (k == 0 && (this.s & 0x80) != (d & 0x80))++k; if (k > 0 || d != this.s) r[k++] = d; } } return r; } function bnEquals(a) { return (this.compareTo(a) == 0); } function bnMin(a) { return (this.compareTo(a) < 0) ? this : a; } function bnMax(a) { return (this.compareTo(a) > 0) ? this : a; } // (protected) r = this op a (bitwise) function bnpBitwiseTo(a, op, r) { var i, f, m = Math.min(a.t, this.t); for (i = 0; i < m; ++i) r[i] = op(this[i], a[i]); if (a.t < this.t) { f = a.s & this.DM; for (i = m; i < this.t; ++i) r[i] = op(this[i], f); r.t = this.t; } else { f = this.s & this.DM; for (i = m; i < a.t; ++i) r[i] = op(f, a[i]); r.t = a.t; } r.s = op(this.s, a.s); r.clamp(); } // (public) this & a function op_and(x, y) { return x & y; } function bnAnd(a) { var r = nbi(); this.bitwiseTo(a, op_and, r); return r; } // (public) this | a function op_or(x, y) { return x | y; } function bnOr(a) { var r = nbi(); this.bitwiseTo(a, op_or, r); return r; } // (public) this ^ a function op_xor(x, y) { return x ^ y; } function bnXor(a) { var r = nbi(); this.bitwiseTo(a, op_xor, r); return r; } // (public) this & ~a function op_andnot(x, y) { return x & ~y; } function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a, op_andnot, r); return r; } // (public) ~this function bnNot() { var r = nbi(); for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i]; r.t = this.t; r.s = ~this.s; return r; } // (public) this << n function bnShiftLeft(n) { var r = nbi(); if (n < 0) this.rShiftTo(-n, r); else this.lShiftTo(n, r); return r; } // (public) this >> n function bnShiftRight(n) { var r = nbi(); if (n < 0) this.lShiftTo(-n, r); else this.rShiftTo(n, r); return r; } // return index of lowest 1-bit in x, x < 2^31 function lbit(x) { if (x == 0) return -1; var r = 0; if ((x & 0xffff) == 0) { x >>= 16; r += 16; } if ((x & 0xff) == 0) { x >>= 8; r += 8; } if ((x & 0xf) == 0) { x >>= 4; r += 4; } if ((x & 3) == 0) { x >>= 2; r += 2; } if ((x & 1) == 0)++r; return r; } // (public) returns index of lowest 1-bit (or -1 if none) function bnGetLowestSetBit() { for (var i = 0; i < this.t; ++i) if (this[i] != 0) return i * this.DB + lbit(this[i]); if (this.s < 0) return this.t * this.DB; return -1; } // return number of 1 bits in x function cbit(x) { var r = 0; while (x != 0) { x &= x - 1; ++r; } return r; } // (public) return number of set bits function bnBitCount() { var r = 0, x = this.s & this.DM; for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x); return r; } // (public) true iff nth bit is set function bnTestBit(n) { var j = Math.floor(n / this.DB); if (j >= this.t) return (this.s != 0); return ((this[j] & (1 << (n % this.DB))) != 0); } // (protected) this op (1<>= this.DB; } if (a.t < this.t) { c += a.s; while (i < this.t) { c += this[i]; r[i++] = c & this.DM; c >>= this.DB; } c += this.s; } else { c += this.s; while (i < a.t) { c += a[i]; r[i++] = c & this.DM; c >>= this.DB; } c += a.s; } r.s = (c < 0) ? -1 : 0; if (c > 0) r[i++] = c; else if (c < -1) r[i++] = this.DV + c; r.t = i; r.clamp(); } // (public) this + a function bnAdd(a) { var r = nbi(); this.addTo(a, r); return r; } // (public) this - a function bnSubtract(a) { var r = nbi(); this.subTo(a, r); return r; } // (public) this * a function bnMultiply(a) { var r = nbi(); this.multiplyTo(a, r); return r; } // (public) this^2 function bnSquare() { var r = nbi(); this.squareTo(r); return r; } // (public) this / a function bnDivide(a) { var r = nbi(); this.divRemTo(a, r, null); return r; } // (public) this % a function bnRemainder(a) { var r = nbi(); this.divRemTo(a, null, r); return r; } // (public) [this/a,this%a] function bnDivideAndRemainder(a) { var q = nbi(), r = nbi(); this.divRemTo(a, q, r); return new Array(q, r); } // (protected) this *= n, this >= 0, 1 < n < DV function bnpDMultiply(n) { this[this.t] = this.am(0, n - 1, this, 0, 0, this.t); ++this.t; this.clamp(); } // (protected) this += n << w words, this >= 0 function bnpDAddOffset(n, w) { if (n == 0) return; while (this.t <= w) this[this.t++] = 0; this[w] += n; while (this[w] >= this.DV) { this[w] -= this.DV; if (++w >= this.t) this[this.t++] = 0; ++this[w]; } } // A "null" reducer function NullExp() {} function nNop(x) { return x; } function nMulTo(x, y, r) { x.multiplyTo(y, r); } function nSqrTo(x, r) { x.squareTo(r); } NullExp.prototype.convert = nNop; NullExp.prototype.revert = nNop; NullExp.prototype.mulTo = nMulTo; NullExp.prototype.sqrTo = nSqrTo; // (public) this^e function bnPow(e) { return this.exp(e, new NullExp()); } // (protected) r = lower n words of "this * a", a.t <= n // "this" should be the larger one if appropriate. function bnpMultiplyLowerTo(a, n, r) { var i = Math.min(this.t + a.t, n); r.s = 0; // assumes a,this >= 0 r.t = i; while (i > 0) r[--i] = 0; var j; for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t); for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i); r.clamp(); } // (protected) r = "this * a" without lower n words, n > 0 // "this" should be the larger one if appropriate. function bnpMultiplyUpperTo(a, n, r) { --n; var i = r.t = this.t + a.t - n; r.s = 0; // assumes a,this >= 0 while (--i >= 0) r[i] = 0; for (i = Math.max(n - this.t, 0); i < a.t; ++i) r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n); r.clamp(); r.drShiftTo(1, r); } // Barrett modular reduction function Barrett(m) { // setup Barrett this.r2 = nbi(); this.q3 = nbi(); BigInteger.ONE.dlShiftTo(2 * m.t, this.r2); this.mu = this.r2.divide(m); this.m = m; } function barrettConvert(x) { if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m); else if (x.compareTo(this.m) < 0) return x; else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } } function barrettRevert(x) { return x; } // x = x mod m (HAC 14.42) function barrettReduce(x) { x.drShiftTo(this.m.t - 1, this.r2); if (x.t > this.m.t + 1) { x.t = this.m.t + 1; x.clamp(); } this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3); this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2); while (x.compareTo(this.r2) < 0) x.dAddOffset(1, this.m.t + 1); x.subTo(this.r2, x); while (x.compareTo(this.m) >= 0) x.subTo(this.m, x); } // r = x^2 mod m; x != r function barrettSqrTo(x, r) { x.squareTo(r); this.reduce(r); } // r = x*y mod m; x,y != r function barrettMulTo(x, y, r) { x.multiplyTo(y, r); this.reduce(r); } Barrett.prototype.convert = barrettConvert; Barrett.prototype.revert = barrettRevert; Barrett.prototype.reduce = barrettReduce; Barrett.prototype.mulTo = barrettMulTo; Barrett.prototype.sqrTo = barrettSqrTo; // (public) this^e % m (HAC 14.85) function bnModPow(e, m) { var i = e.bitLength(), k, r = nbv(1), z; if (i <= 0) return r; else if (i < 18) k = 1; else if (i < 48) k = 3; else if (i < 144) k = 4; else if (i < 768) k = 5; else k = 6; if (i < 8) z = new Classic(m); else if (m.isEven()) z = new Barrett(m); else z = new Montgomery(m); // precomputation var g = new Array(), n = 3, k1 = k - 1, km = (1 << k) - 1; g[1] = z.convert(this); if (k > 1) { var g2 = nbi(); z.sqrTo(g[1], g2); while (n <= km) { g[n] = nbi(); z.mulTo(g2, g[n - 2], g[n]); n += 2; } } var j = e.t - 1, w, is1 = true, r2 = nbi(), t; i = nbits(e[j]) - 1; while (j >= 0) { if (i >= k1) w = (e[j] >> (i - k1)) & km; else { w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i); if (j > 0) w |= e[j - 1] >> (this.DB + i - k1); } n = k; while ((w & 1) == 0) { w >>= 1; --n; } if ((i -= n) < 0) { i += this.DB; --j; } if (is1) { // ret == 1, don't bother squaring or multiplying it g[w].copyTo(r); is1 = false; } else { while (n > 1) { z.sqrTo(r, r2); z.sqrTo(r2, r); n -= 2; } if (n > 0) z.sqrTo(r, r2); else { t = r; r = r2; r2 = t; } z.mulTo(r2, g[w], r); } while (j >= 0 && (e[j] & (1 << i)) == 0) { z.sqrTo(r, r2); t = r; r = r2; r2 = t; if (--i < 0) { i = this.DB - 1; --j; } } } return z.revert(r); } // (public) gcd(this,a) (HAC 14.54) function bnGCD(a) { var x = (this.s < 0) ? this.negate() : this.clone(); var y = (a.s < 0) ? a.negate() : a.clone(); if (x.compareTo(y) < 0) { var t = x; x = y; y = t; } var i = x.getLowestSetBit(), g = y.getLowestSetBit(); if (g < 0) return x; if (i < g) g = i; if (g > 0) { x.rShiftTo(g, x); y.rShiftTo(g, y); } while (x.signum() > 0) { if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x); if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y); if (x.compareTo(y) >= 0) { x.subTo(y, x); x.rShiftTo(1, x); } else { y.subTo(x, y); y.rShiftTo(1, y); } } if (g > 0) y.lShiftTo(g, y); return y; } // (protected) this % n, n < 2^26 function bnpModInt(n) { if (n <= 0) return 0; var d = this.DV % n, r = (this.s < 0) ? n - 1 : 0; if (this.t > 0) if (d == 0) r = this[0] % n; else for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n; return r; } // (public) 1/this % m (HAC 14.61) function bnModInverse(m) { var ac = m.isEven(); if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; var u = m.clone(), v = this.clone(); var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); while (u.signum() != 0) { while (u.isEven()) { u.rShiftTo(1, u); if (ac) { if (!a.isEven() || !b.isEven()) { a.addTo(this, a); b.subTo(m, b); } a.rShiftTo(1, a); } else if (!b.isEven()) b.subTo(m, b); b.rShiftTo(1, b); } while (v.isEven()) { v.rShiftTo(1, v); if (ac) { if (!c.isEven() || !d.isEven()) { c.addTo(this, c); d.subTo(m, d); } c.rShiftTo(1, c); } else if (!d.isEven()) d.subTo(m, d); d.rShiftTo(1, d); } if (u.compareTo(v) >= 0) { u.subTo(v, u); if (ac) a.subTo(c, a); b.subTo(d, b); } else { v.subTo(u, v); if (ac) c.subTo(a, c); d.subTo(b, d); } } if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; if (d.compareTo(m) >= 0) return d.subtract(m); if (d.signum() < 0) d.addTo(m, d); else return d; if (d.signum() < 0) return d.add(m); else return d; } var lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997]; var lplim = (1 << 26) / lowprimes[lowprimes.length - 1]; // (public) hook_windows primality with certainty >= 1-.5^t function bnIsProbablePrime(t) { var i, x = this.abs(); if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1]) { for (i = 0; i < lowprimes.length; ++i) if (x[0] == lowprimes[i]) return true; return false; } if (x.isEven()) return false; i = 1; while (i < lowprimes.length) { var m = lowprimes[i], j = i + 1; while (j < lowprimes.length && m < lplim) m *= lowprimes[j++]; m = x.modInt(m); while (i < j) if (m % lowprimes[i++] == 0) return false; } return x.millerRabin(t); } // (protected) true if probably prime (HAC 4.24, Miller-Rabin) function bnpMillerRabin(t) { var n1 = this.subtract(BigInteger.ONE); var k = n1.getLowestSetBit(); if (k <= 0) return false; var r = n1.shiftRight(k); t = (t + 1) >> 1; if (t > lowprimes.length) t = lowprimes.length; var a = nbi(); for (var i = 0; i < t; ++i) { //Pick bases at random, instead of starting at 2 a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]); var y = a.modPow(r, this); if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { var j = 1; while (j++ < k && y.compareTo(n1) != 0) { y = y.modPowInt(2, this); if (y.compareTo(BigInteger.ONE) == 0) return false; } if (y.compareTo(n1) != 0) return false; } } return true; } // protected BigInteger.prototype.chunkSize = bnpChunkSize; BigInteger.prototype.toRadix = bnpToRadix; BigInteger.prototype.fromRadix = bnpFromRadix; BigInteger.prototype.fromNumber = bnpFromNumber; BigInteger.prototype.bitwiseTo = bnpBitwiseTo; BigInteger.prototype.changeBit = bnpChangeBit; BigInteger.prototype.addTo = bnpAddTo; BigInteger.prototype.dMultiply = bnpDMultiply; BigInteger.prototype.dAddOffset = bnpDAddOffset; BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; BigInteger.prototype.modInt = bnpModInt; BigInteger.prototype.millerRabin = bnpMillerRabin; // public BigInteger.prototype.clone = bnClone; BigInteger.prototype.intValue = bnIntValue; BigInteger.prototype.byteValue = bnByteValue; BigInteger.prototype.shortValue = bnShortValue; BigInteger.prototype.signum = bnSigNum; BigInteger.prototype.toByteArray = bnToByteArray; BigInteger.prototype.equals = bnEquals; BigInteger.prototype.min = bnMin; BigInteger.prototype.max = bnMax; BigInteger.prototype.and = bnAnd; BigInteger.prototype.or = bnOr; BigInteger.prototype.xor = bnXor; BigInteger.prototype.andNot = bnAndNot; BigInteger.prototype.not = bnNot; BigInteger.prototype.shiftLeft = bnShiftLeft; BigInteger.prototype.shiftRight = bnShiftRight; BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; BigInteger.prototype.bitCount = bnBitCount; BigInteger.prototype.testBit = bnTestBit; BigInteger.prototype.setBit = bnSetBit; BigInteger.prototype.clearBit = bnClearBit; BigInteger.prototype.flipBit = bnFlipBit; BigInteger.prototype.add = bnAdd; BigInteger.prototype.subtract = bnSubtract; BigInteger.prototype.multiply = bnMultiply; BigInteger.prototype.divide = bnDivide; BigInteger.prototype.remainder = bnRemainder; BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; BigInteger.prototype.modPow = bnModPow; BigInteger.prototype.modInverse = bnModInverse; BigInteger.prototype.pow = bnPow; BigInteger.prototype.gcd = bnGCD; BigInteger.prototype.isProbablePrime = bnIsProbablePrime; // JSBN-specific extension BigInteger.prototype.square = bnSquare; // BigInteger interfaces not implemented in jsbn: // BigInteger(int signum, byte[] magnitude) // double doubleValue() // float floatValue() // int hashCode() // long longValue() // static BigInteger valueOf(long val) // prng4.js - uses Arcfour as a PRNG function Arcfour() { this.i = 0; this.j = 0; this.S = new Array(); } // Initialize arcfour context from key, an array of ints, each from [0..255] function ARC4init(key) { var i, j, t; for (i = 0; i < 256; ++i) this.S[i] = i; j = 0; for (i = 0; i < 256; ++i) { j = (j + this.S[i] + key[i % key.length]) & 255; t = this.S[i]; this.S[i] = this.S[j]; this.S[j] = t; } this.i = 0; this.j = 0; } function ARC4next() { var t; this.i = (this.i + 1) & 255; this.j = (this.j + this.S[this.i]) & 255; t = this.S[this.i]; this.S[this.i] = this.S[this.j]; this.S[this.j] = t; return this.S[(t + this.S[this.i]) & 255]; } Arcfour.prototype.init = ARC4init; Arcfour.prototype.next = ARC4next; // Plug in your RNG constructor here function prng_newstate() { return new Arcfour(); } // Pool size must be a multiple of 4 and greater than 32. // An array of bytes the size of the pool will be passed to init() var rng_psize = 256; // Random number generator - requires a PRNG backend, e.g. prng4.js var rng_state; var rng_pool; var rng_pptr; // Initialize the pool with junk if needed. if (rng_pool == null) { rng_pool = new Array(); rng_pptr = 0; var t; if (window.crypto && window.crypto.getRandomValues) { // Extract entropy (2048 bits) from RNG if available var z = new Uint32Array(256); window.crypto.getRandomValues(z); for (t = 0; t < z.length; ++t) rng_pool[rng_pptr++] = z[t] & 255; } // Use mouse events for entropy, if we do not have enough entropy by the time // we need it, entropy will be generated by Math.random. var onMouseMoveListener = function (ev) { this.count = this.count || 0; if (this.count >= 256 || rng_pptr >= rng_psize) { if (window.removeEventListener) window.removeEventListener("mousemove", onMouseMoveListener, false); else if (window.detachEvent) window.detachEvent("onmousemove", onMouseMoveListener); return; } try { var mouseCoordinates = ev.x + ev.y; rng_pool[rng_pptr++] = mouseCoordinates & 255; this.count += 1; } catch (e) { // Sometimes Firefox will deny permission to access event properties for some reason. Ignore. } }; if (window.addEventListener) window.addEventListener("mousemove", onMouseMoveListener, false); else if (window.attachEvent) window.attachEvent("onmousemove", onMouseMoveListener); } function rng_get_byte() { if (rng_state == null) { rng_state = prng_newstate(); // At this point, we may not have collected enough entropy. If not, fall back to Math.random while (rng_pptr < rng_psize) { var random = Math.floor(65536 * Math.random()); rng_pool[rng_pptr++] = random & 255; } rng_state.init(rng_pool); for (rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) rng_pool[rng_pptr] = 0; rng_pptr = 0; } // TODO: allow reseeding after first request return rng_state.next(); } function rng_get_bytes(ba) { var i; for (i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); } function SecureRandom() {} SecureRandom.prototype.nextBytes = rng_get_bytes; // Depends on jsbn.js and rng.js // Version 1.1: support utf-8 encoding in pkcs1pad2 // convert a (hex) string to a bignum object function parseBigInt(str, r) { return new BigInteger(str, r); } function linebrk(s, n) { var ret = ""; var i = 0; while (i + n < s.length) { ret += s.substring(i, i + n) + "\n"; i += n; } return ret + s.substring(i, s.length); } function byte2Hex(b) { if (b < 0x10) return "0" + b.toString(16); else return b.toString(16); } // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint function pkcs1pad2(s, n, type) { if (n < s.length + 11) { // TODO: fix for utf-8 console.error("Message too long for RSA"); return null; } var ba = new Array(); var i = s.length - 1; while (i >= 0 && n > 0) { var c = s.charCodeAt(i--); if (c < 128) { // encode using utf-8 ba[--n] = c; } else if ((c > 127) && (c < 2048)) { ba[--n] = (c & 63) | 128; ba[--n] = (c >> 6) | 192; } else { ba[--n] = (c & 63) | 128; ba[--n] = ((c >> 6) & 63) | 128; ba[--n] = (c >> 12) | 224; } } ba[--n] = 0; if (type == 2) { var rng = new SecureRandom(); var x = new Array(); while (n > 2) { // random non-zero pad x[0] = 0; while (x[0] == 0) rng.nextBytes(x); ba[--n] = x[0]; } } else if (type == 0) { // zero pad ba[--n] = 0; } else { while (n > 2) { // fixed non-zero pad ba[--n] = 255; } } ba[--n] = type; ba[--n] = 0; return new BigInteger(ba); } // "empty" RSA key constructor function RSAKey() { this.n = null; this.e = 0; this.d = null; this.p = null; this.q = null; this.dmp1 = null; this.dmq1 = null; this.coeff = null; } // Set the public key fields N and e from hex strings function RSASetPublic(N, E) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16); this.e = parseInt(E, 16); } else console.error("Invalid RSA public key"); } // Perform raw public operation on "x": return x^e (mod n) function RSADoPublic(x) { return x.modPowInt(this.e, this.n); } // Return the PKCS#1 RSA encryption of "text" as an even-length hex string function RSAPublicEncrypt(text, padding) { var m = pkcs1pad2(text, (this.n.bitLength() + 7) >> 3, padding); // 2 if (m == null) return null; var c = this.doPublic(m); if (c == null) return null; var h = c.toString(16); if ((h.length & 1) == 0) return h; else return "0" + h; } function RSAPrivateEncrypt(text, padding) { var m = pkcs1pad2(text, (this.n.bitLength() + 7) >> 3, padding); // 1 if (m == null) return null; var c = this.doPrivate(m); if (c == null) return null; var h = c.toString(16); if ((h.length & 1) == 0) return h; else return "0" + h; } // Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string //function RSAEncryptB64(text) { // var h = this.encrypt(text); // if(h) return hex2b64(h); else return null; //} // protected RSAKey.prototype.doPublic = RSADoPublic; // public RSAKey.prototype.setPublic = RSASetPublic; RSAKey.prototype.encrypt_public = RSAPublicEncrypt; RSAKey.prototype.encrypt_private = RSAPrivateEncrypt; //RSAKey.prototype.encrypt_b64 = RSAEncryptB64; // Depends on rsa.js and jsbn2.js // Version 1.1: support utf-8 decoding in pkcs1unpad2 // Undo PKCS#1 (type 2, random) padding and, if valid, return the plaintext function pkcs1unpad2(d, n, type) { var b = d.toByteArray(); var i = 0; if (type == 0) { // zero pad i = -1; } else { // # while (i < b.length && b[i] == 0)++i; if (b.length - i != n - 1 || b[i] != type) return null; ++i; while (b[i] != 0) if (++i >= b.length) return null; } var ret = ""; while (++i < b.length) { var c = b[i] & 255; if (c < 128) { // utf-8 decode ret += String.fromCharCode(c); } else if ((c > 191) && (c < 224)) { ret += String.fromCharCode(((c & 31) << 6) | (b[i + 1] & 63)); ++i; } else { ret += String.fromCharCode(((c & 15) << 12) | ((b[i + 1] & 63) << 6) | (b[i + 2] & 63)); i += 2; } } return ret; } // Set the private key fields N, e, and d from hex strings function RSASetPrivate(N, E, D) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16); this.e = parseInt(E, 16); this.d = parseBigInt(D, 16); } else console.error("Invalid RSA private key"); } // Set the private key fields N, e, d and CRT params from hex strings function RSASetPrivateEx(N, E, D, P, Q, DP, DQ, C) { if (N != null && E != null && N.length > 0 && E.length > 0) { this.n = parseBigInt(N, 16); this.e = parseInt(E, 16); this.d = parseBigInt(D, 16); this.p = parseBigInt(P, 16); this.q = parseBigInt(Q, 16); this.dmp1 = parseBigInt(DP, 16); this.dmq1 = parseBigInt(DQ, 16); this.coeff = parseBigInt(C, 16); } else console.error("Invalid RSA private key"); } // Generate a new random private key B bits long, using public expt E function RSAGenerate(B, E) { var rng = new SecureRandom(); var qs = B >> 1; this.e = parseInt(E, 16); var ee = new BigInteger(E, 16); for (;;) { for (;;) { this.p = new BigInteger(B - qs, 1, rng); if (this.p.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.p.isProbablePrime(10)) break; } for (;;) { this.q = new BigInteger(qs, 1, rng); if (this.q.subtract(BigInteger.ONE).gcd(ee).compareTo(BigInteger.ONE) == 0 && this.q.isProbablePrime(10)) break; } if (this.p.compareTo(this.q) <= 0) { var t = this.p; this.p = this.q; this.q = t; } var p1 = this.p.subtract(BigInteger.ONE); var q1 = this.q.subtract(BigInteger.ONE); var phi = p1.multiply(q1); if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { this.n = this.p.multiply(this.q); this.d = ee.modInverse(phi); this.dmp1 = this.d.mod(p1); this.dmq1 = this.d.mod(q1); this.coeff = this.q.modInverse(this.p); break; } } } // Perform raw private operation on "x": return x^d (mod n) function RSADoPrivate(x) { if (this.p == null || this.q == null) return x.modPow(this.d, this.n); // TODO: re-calculate any missing CRT params var xp = x.mod(this.p).modPow(this.dmp1, this.p); var xq = x.mod(this.q).modPow(this.dmq1, this.q); while (xp.compareTo(xq) < 0) xp = xp.add(this.p); return xp.subtract(xq).multiply(this.coeff).mod(this.p).multiply(this.q).add(xq); } // Return the PKCS#1 RSA decryption of "ctext". // "ctext" is an even-length hex string and the output is a plain string. function RSAPrivateDecrypt(ctext, padding) { var c = parseBigInt(ctext, 16); var m = this.doPrivate(c); if (m == null) return null; return pkcs1unpad2(m, (this.n.bitLength() + 7) >> 3, padding); // 2 } function RSAPublicDecrypt(ctext, padding) { var c = parseBigInt(ctext, 16); var m = this.doPublic(c); if (m == null) return null; //var unpadded = m.toString(16).replace(/^1f+00/, ""); //console.log(m, m.toString(16), unpadded); return pkcs1unpad2(m, (this.n.bitLength() + 7) >> 3, padding); // 1 } // Return the PKCS#1 RSA decryption of "ctext". // "ctext" is a Base64-encoded string and the output is a plain string. //function RSAB64Decrypt(ctext) { // var h = b64tohex(ctext); // if(h) return this.decrypt(h); else return null; //} // protected RSAKey.prototype.doPrivate = RSADoPrivate; // public RSAKey.prototype.setPrivate = RSASetPrivate; RSAKey.prototype.setPrivateEx = RSASetPrivateEx; RSAKey.prototype.generate = RSAGenerate; RSAKey.prototype.decrypt_private = RSAPrivateDecrypt; RSAKey.prototype.decrypt_public = RSAPublicDecrypt; //RSAKey.prototype.b64_decrypt = RSAB64Decrypt; // Copyright (c) 2011 Kevin M Burns Jr. // All Rights Reserved. // See "LICENSE" for details. // // Extension to jsbn which adds facilities for asynchronous RSA key generation // Primarily created to avoid execution timeout on mobile devices // // http://www-cs-students.stanford.edu/~tjw/jsbn/ // // --- (function () { // Generate a new random private key B bits long, using public expt E var RSAGenerateAsync = function (B, E, callback) { //var rng = new SeededRandom(); var rng = new SecureRandom(); var qs = B >> 1; this.e = parseInt(E, 16); var ee = new BigInteger(E, 16); var rsa = this; // These functions have non-descript names because they were originally for(;;) loops. // I don't know about cryptography to give them better names than loop1-4. var loop1 = function () { var loop4 = function () { if (rsa.p.compareTo(rsa.q) <= 0) { var t = rsa.p; rsa.p = rsa.q; rsa.q = t; } var p1 = rsa.p.subtract(BigInteger.ONE); var q1 = rsa.q.subtract(BigInteger.ONE); var phi = p1.multiply(q1); if (phi.gcd(ee).compareTo(BigInteger.ONE) == 0) { rsa.n = rsa.p.multiply(rsa.q); rsa.d = ee.modInverse(phi); rsa.dmp1 = rsa.d.mod(p1); rsa.dmq1 = rsa.d.mod(q1); rsa.coeff = rsa.q.modInverse(rsa.p); setTimeout(function () { callback() }, 0); // escape } else { setTimeout(loop1, 0); } }; var loop3 = function () { rsa.q = nbi(); rsa.q.fromNumberAsync(qs, 1, rng, function () { rsa.q.subtract(BigInteger.ONE).gcda(ee, function (r) { if (r.compareTo(BigInteger.ONE) == 0 && rsa.q.isProbablePrime(10)) { setTimeout(loop4, 0); } else { setTimeout(loop3, 0); } }); }); }; var loop2 = function () { rsa.p = nbi(); rsa.p.fromNumberAsync(B - qs, 1, rng, function () { rsa.p.subtract(BigInteger.ONE).gcda(ee, function (r) { if (r.compareTo(BigInteger.ONE) == 0 && rsa.p.isProbablePrime(10)) { setTimeout(loop3, 0); } else { setTimeout(loop2, 0); } }); }); }; setTimeout(loop2, 0); }; setTimeout(loop1, 0); }; RSAKey.prototype.generateAsync = RSAGenerateAsync; // Public API method var bnGCDAsync = function (a, callback) { var x = (this.s < 0) ? this.negate() : this.clone(); var y = (a.s < 0) ? a.negate() : a.clone(); if (x.compareTo(y) < 0) { var t = x; x = y; y = t; } var i = x.getLowestSetBit(), g = y.getLowestSetBit(); if (g < 0) { callback(x); return; } if (i < g) g = i; if (g > 0) { x.rShiftTo(g, x); y.rShiftTo(g, y); } // Workhorse of the algorithm, gets called 200 - 800 times per 512 bit keygen. var gcda1 = function () { if ((i = x.getLowestSetBit()) > 0) { x.rShiftTo(i, x); } if ((i = y.getLowestSetBit()) > 0) { y.rShiftTo(i, y); } if (x.compareTo(y) >= 0) { x.subTo(y, x); x.rShiftTo(1, x); } else { y.subTo(x, y); y.rShiftTo(1, y); } if (!(x.signum() > 0)) { if (g > 0) y.lShiftTo(g, y); setTimeout(function () { callback(y) }, 0); // escape } else { setTimeout(gcda1, 0); } }; setTimeout(gcda1, 10); }; BigInteger.prototype.gcda = bnGCDAsync; // (protected) alternate constructor var bnpFromNumberAsync = function (a, b, c, callback) { if ("number" == typeof b) { if (a < 2) { this.fromInt(1); } else { this.fromNumber(a, c); if (!this.testBit(a - 1)) { this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this); } if (this.isEven()) { this.dAddOffset(1, 0); } var bnp = this; var bnpfn1 = function () { bnp.dAddOffset(2, 0); if (bnp.bitLength() > a) bnp.subTo(BigInteger.ONE.shiftLeft(a - 1), bnp); if (bnp.isProbablePrime(b)) { setTimeout(function () { callback() }, 0); // escape } else { setTimeout(bnpfn1, 0); } }; setTimeout(bnpfn1, 0); } } else { var x = new Array(), t = a & 7; x.length = (a >> 3) + 1; b.nextBytes(x); if (t > 0) x[0] &= ((1 << t) - 1); else x[0] = 0; this.fromString(x, 256); } }; BigInteger.prototype.fromNumberAsync = bnpFromNumberAsync; })(); var b64map = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; var b64pad = "="; function hex2b64(h) { var i; var c; var ret = ""; for (i = 0; i + 3 <= h.length; i += 3) { c = parseInt(h.substring(i, i + 3), 16); ret += b64map.charAt(c >> 6) + b64map.charAt(c & 63); } if (i + 1 == h.length) { c = parseInt(h.substring(i, i + 1), 16); ret += b64map.charAt(c << 2); } else if (i + 2 == h.length) { c = parseInt(h.substring(i, i + 2), 16); ret += b64map.charAt(c >> 2) + b64map.charAt((c & 3) << 4); } while ((ret.length & 3) > 0) ret += b64pad; return ret; } // convert a base64 string to hex function b64tohex(s) { var ret = "" var i; var k = 0; // b64 state, 0-3 var slop; for (i = 0; i < s.length; ++i) { if (s.charAt(i) == b64pad) break; v = b64map.indexOf(s.charAt(i)); if (v < 0) continue; if (k == 0) { ret += int2char(v >> 2); slop = v & 3; k = 1; } else if (k == 1) { ret += int2char((slop << 2) | (v >> 4)); slop = v & 0xf; k = 2; } else if (k == 2) { ret += int2char(slop); ret += int2char(v >> 2); slop = v & 3; k = 3; } else { ret += int2char((slop << 2) | (v >> 4)); ret += int2char(v & 0xf); k = 0; } } if (k == 1) ret += int2char(slop << 2); return ret; } // convert a base64 string to a byte/number array function b64toBA(s) { //piggyback on b64tohex for now, optimize later var h = b64tohex(s); var i; var a = new Array(); for (i = 0; 2 * i < h.length; ++i) { a[i] = parseInt(h.substring(2 * i, 2 * i + 2), 16); } return a; } /*! asn1-1.0.2.js (c) 2013 Kenji Urushima | kjur.github.com/jsrsasign/license */ var JSX = JSX || {}; JSX.env = JSX.env || {}; var L = JSX, OP = Object.prototype, FUNCTION_TOSTRING = '[object Function]', ADD = ["toString", "valueOf"]; JSX.env.parseUA = function (agent) { var numberify = function (s) { var c = 0; return parseFloat(s.replace(/\./g, function () { return (c++ == 1) ? '' : '.'; })); }, nav = navigator, o = { ie: 0, opera: 0, gecko: 0, webkit: 0, chrome: 0, mobile: null, air: 0, ipad: 0, iphone: 0, ipod: 0, ios: null, android: 0, webos: 0, caja: nav && nav.cajaVersion, secure: false, os: null }, ua = agent || (navigator && navigator.userAgent), loc = window && window.location, href = loc && loc.href, m; o.secure = href && (href.toLowerCase().indexOf("https") === 0); if (ua) { if ((/windows|win32/i).test(ua)) { o.os = 'windows'; } else if ((/macintosh/i).test(ua)) { o.os = 'macintosh'; } else if ((/rhino/i).test(ua)) { o.os = 'rhino'; } if ((/KHTML/).test(ua)) { o.webkit = 1; } m = ua.match(/AppleWebKit\/([^\s]*)/); if (m && m[1]) { o.webkit = numberify(m[1]); if (/ Mobile\//.test(ua)) { o.mobile = 'Apple'; // iPhone or iPod Touch m = ua.match(/OS ([^\s]*)/); if (m && m[1]) { m = numberify(m[1].replace('_', '.')); } o.ios = m; o.ipad = o.ipod = o.iphone = 0; m = ua.match(/iPad|iPod|iPhone/); if (m && m[0]) { o[m[0].toLowerCase()] = o.ios; } } else { m = ua.match(/NokiaN[^\/]*|Android \d\.\d|webOS\/\d\.\d/); if (m) { o.mobile = m[0]; } if (/webOS/.test(ua)) { o.mobile = 'WebOS'; m = ua.match(/webOS\/([^\s]*);/); if (m && m[1]) { o.webos = numberify(m[1]); } } if (/ Android/.test(ua)) { o.mobile = 'Android'; m = ua.match(/Android ([^\s]*);/); if (m && m[1]) { o.android = numberify(m[1]); } } } m = ua.match(/Chrome\/([^\s]*)/); if (m && m[1]) { o.chrome = numberify(m[1]); // Chrome } else { m = ua.match(/AdobeAIR\/([^\s]*)/); if (m) { o.air = m[0]; // Adobe AIR 1.0 or better } } } if (!o.webkit) { m = ua.match(/Opera[\s\/]([^\s]*)/); if (m && m[1]) { o.opera = numberify(m[1]); m = ua.match(/Version\/([^\s]*)/); if (m && m[1]) { o.opera = numberify(m[1]); // opera 10+ } m = ua.match(/Opera Mini[^;]*/); if (m) { o.mobile = m[0]; // ex: Opera Mini/2.0.4509/1316 } } else { // not opera or webkit m = ua.match(/MSIE\s([^;]*)/); if (m && m[1]) { o.ie = numberify(m[1]); } else { // not opera, webkit, or ie m = ua.match(/Gecko\/([^\s]*)/); if (m) { o.gecko = 1; // Gecko detected, look for revision m = ua.match(/rv:([^\s\)]*)/); if (m && m[1]) { o.gecko = numberify(m[1]); } } } } } } return o; }; JSX.env.ua = JSX.env.parseUA(); JSX.isFunction = function (o) { return (typeof o === 'function') || OP.toString.apply(o) === FUNCTION_TOSTRING; }; JSX._IEEnumFix = (JSX.env.ua.ie) ? function (r, s) { var i, fname, f; for (i = 0; i < ADD.length; i = i + 1) { fname = ADD[i]; f = s[fname]; if (L.isFunction(f) && f != OP[fname]) { r[fname] = f; } } } : function () {}; JSX.extend = function (subc, superc, overrides) { if (!superc || !subc) { throw new Error("extend failed, please check that " + "all dependencies are included."); } var F = function () {}, i; F.prototype = superc.prototype; subc.prototype = new F(); subc.prototype.constructor = subc; subc.superclass = superc.prototype; if (superc.prototype.constructor == OP.constructor) { superc.prototype.constructor = superc; } if (overrides) { for (i in overrides) { if (L.hasOwnProperty(overrides, i)) { subc.prototype[i] = overrides[i]; } } L._IEEnumFix(subc.prototype, overrides); } }; /* * asn1.js - ASN.1 DER encoder classes * * Copyright (c) 2013 Kenji Urushima (kenji.urushima@gmail.com) * * This software is licensed under the terms of the MIT License. * http://kjur.github.com/jsrsasign/license * * The above copyright and license notice shall be * included in all copies or substantial portions of the Software. */ /** * @fileOverview * @name asn1-1.0.js * @author Kenji Urushima kenji.urushima@gmail.com * @version 1.0.2 (2013-May-30) * @since 2.1 * @license MIT License */ /** * kjur's class library name space *

* This name space provides following name spaces: *

*

* NOTE: Please ignore method summary and document of this namespace. This caused by a bug of jsdoc2. * @name KJUR * @namespace kjur's class library name space */ if (typeof KJUR == "undefined" || !KJUR) KJUR = {}; /** * kjur's ASN.1 class library name space *

* This is ITU-T X.690 ASN.1 DER encoder class library and * class structure and methods is very similar to * org.bouncycastle.asn1 package of * well known BouncyCaslte Cryptography Library. * *

PROVIDING ASN.1 PRIMITIVES

* Here are ASN.1 DER primitive classes. * * *

OTHER ASN.1 CLASSES

* *

* NOTE: Please ignore method summary and document of this namespace. This caused by a bug of jsdoc2. * @name KJUR.asn1 * @namespace */ if (typeof KJUR.asn1 == "undefined" || !KJUR.asn1) KJUR.asn1 = {}; /** * ASN1 utilities class * @name KJUR.asn1.ASN1Util * @classs ASN1 utilities class * @since asn1 1.0.2 */ KJUR.asn1.ASN1Util = new function () { this.integerToByteHex = function (i) { var h = i.toString(16); if ((h.length % 2) == 1) h = '0' + h; return h; }; this.bigIntToMinTwosComplementsHex = function (bigIntegerValue) { var h = bigIntegerValue.toString(16); if (h.substr(0, 1) != '-') { if (h.length % 2 == 1) { h = '0' + h; } else { if (!h.match(/^[0-7]/)) { h = '00' + h; } } } else { var hPos = h.substr(1); var xorLen = hPos.length; if (xorLen % 2 == 1) { xorLen += 1; } else { if (!h.match(/^[0-7]/)) { xorLen += 2; } } var hMask = ''; for (var i = 0; i < xorLen; i++) { hMask += 'f'; } var biMask = new BigInteger(hMask, 16); var biNeg = biMask.xor(bigIntegerValue).add(BigInteger.ONE); h = biNeg.toString(16).replace(/^-/, ''); } return h; }; /** * get PEM string from hexadecimal data and header string * @name getPEMStringFromHex * @memberOf KJUR.asn1.ASN1Util * @function * @param {String} dataHex hexadecimal string of PEM body * @param {String} pemHeader PEM header string (ex. 'RSA PRIVATE KEY') * @return {String} PEM formatted string of input data * @description * @example * var pem = KJUR.asn1.ASN1Util.getPEMStringFromHex('616161', 'RSA PRIVATE KEY'); * // value of pem will be: * -----BEGIN PRIVATE KEY----- * YWFh * -----END PRIVATE KEY----- */ this.getPEMStringFromHex = function (dataHex, pemHeader) { var dataWA = CryptoJS.enc.Hex.parse(dataHex); var dataB64 = CryptoJS.enc.Base64.stringify(dataWA); var pemBody = dataB64.replace(/(.{64})/g, "$1\r\n"); pemBody = pemBody.replace(/\r\n$/, ''); return "-----BEGIN " + pemHeader + "-----\r\n" + pemBody + "\r\n-----END " + pemHeader + "-----\r\n"; }; }; // ******************************************************************** // Abstract ASN.1 Classes // ******************************************************************** // ******************************************************************** /** * base class for ASN.1 DER encoder object * @name KJUR.asn1.ASN1Object * @class base class for ASN.1 DER encoder object * @property {Boolean} isModified flag whether internal data was changed * @property {String} hTLV hexadecimal string of ASN.1 TLV * @property {String} hT hexadecimal string of ASN.1 TLV tag(T) * @property {String} hL hexadecimal string of ASN.1 TLV length(L) * @property {String} hV hexadecimal string of ASN.1 TLV value(V) * @description */ KJUR.asn1.ASN1Object = function () { var isModified = true; var hTLV = null; var hT = '00' var hL = '00'; var hV = ''; /** * get hexadecimal ASN.1 TLV length(L) bytes from TLV value(V) * @name getLengthHexFromValue * @memberOf KJUR.asn1.ASN1Object * @function * @return {String} hexadecimal string of ASN.1 TLV length(L) */ this.getLengthHexFromValue = function () { if (typeof this.hV == "undefined" || this.hV == null) { throw "this.hV is null or undefined."; } if (this.hV.length % 2 == 1) { throw "value hex must be even length: n=" + hV.length + ",v=" + this.hV; } var n = this.hV.length / 2; var hN = n.toString(16); if (hN.length % 2 == 1) { hN = "0" + hN; } if (n < 128) { return hN; } else { var hNlen = hN.length / 2; if (hNlen > 15) { throw "ASN.1 length too long to represent by 8x: n = " + n.toString(16); } var head = 128 + hNlen; return head.toString(16) + hN; } }; /** * get hexadecimal string of ASN.1 TLV bytes * @name getEncodedHex * @memberOf KJUR.asn1.ASN1Object * @function * @return {String} hexadecimal string of ASN.1 TLV */ this.getEncodedHex = function () { if (this.hTLV == null || this.isModified) { this.hV = this.getFreshValueHex(); this.hL = this.getLengthHexFromValue(); this.hTLV = this.hT + this.hL + this.hV; this.isModified = false; //console.error("first time: " + this.hTLV); } return this.hTLV; }; /** * get hexadecimal string of ASN.1 TLV value(V) bytes * @name getValueHex * @memberOf KJUR.asn1.ASN1Object * @function * @return {String} hexadecimal string of ASN.1 TLV value(V) bytes */ this.getValueHex = function () { this.getEncodedHex(); return this.hV; } this.getFreshValueHex = function () { return ''; }; }; // == BEGIN DERAbstractString ================================================ /** * base class for ASN.1 DER string classes * @name KJUR.asn1.DERAbstractString * @class base class for ASN.1 DER string classes * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @property {String} s internal string of value * @extends KJUR.asn1.ASN1Object * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERAbstractString = function (params) { KJUR.asn1.DERAbstractString.superclass.constructor.call(this); var s = null; var hV = null; /** * get string value of this string object * @name getString * @memberOf KJUR.asn1.DERAbstractString * @function * @return {String} string value of this string object */ this.getString = function () { return this.s; }; /** * set value by a string * @name setString * @memberOf KJUR.asn1.DERAbstractString * @function * @param {String} newS value by a string to set */ this.setString = function (newS) { this.hTLV = null; this.isModified = true; this.s = newS; this.hV = stohex(this.s); }; /** * set value by a hexadecimal string * @name setStringHex * @memberOf KJUR.asn1.DERAbstractString * @function * @param {String} newHexString value by a hexadecimal string to set */ this.setStringHex = function (newHexString) { this.hTLV = null; this.isModified = true; this.s = null; this.hV = newHexString; }; this.getFreshValueHex = function () { return this.hV; }; if (typeof params != "undefined") { if (typeof params['str'] != "undefined") { this.setString(params['str']); } else if (typeof params['hex'] != "undefined") { this.setStringHex(params['hex']); } } }; JSX.extend(KJUR.asn1.DERAbstractString, KJUR.asn1.ASN1Object); // == END DERAbstractString ================================================ // == BEGIN DERAbstractTime ================================================== /** * base class for ASN.1 DER Generalized/UTCTime class * @name KJUR.asn1.DERAbstractTime * @class base class for ASN.1 DER Generalized/UTCTime class * @param {Array} params associative array of parameters (ex. {'str': '130430235959Z'}) * @extends KJUR.asn1.ASN1Object * @description * @see KJUR.asn1.ASN1Object - superclass */ KJUR.asn1.DERAbstractTime = function (params) { KJUR.asn1.DERAbstractTime.superclass.constructor.call(this); var s = null; var date = null; // --- PRIVATE METHODS -------------------- this.localDateToUTC = function (d) { utc = d.getTime() + (d.getTimezoneOffset() * 60000); var utcDate = new Date(utc); return utcDate; }; this.formatDate = function (dateObject, type) { var pad = this.zeroPadding; var d = this.localDateToUTC(dateObject); var year = String(d.getFullYear()); if (type == 'utc') year = year.substr(2, 2); var month = pad(String(d.getMonth() + 1), 2); var day = pad(String(d.getDate()), 2); var hour = pad(String(d.getHours()), 2); var min = pad(String(d.getMinutes()), 2); var sec = pad(String(d.getSeconds()), 2); return year + month + day + hour + min + sec + 'Z'; }; this.zeroPadding = function (s, len) { if (s.length >= len) return s; return new Array(len - s.length + 1).join('0') + s; }; // --- PUBLIC METHODS -------------------- /** * get string value of this string object * @name getString * @memberOf KJUR.asn1.DERAbstractTime * @function * @return {String} string value of this time object */ this.getString = function () { return this.s; }; /** * set value by a string * @name setString * @memberOf KJUR.asn1.DERAbstractTime * @function * @param {String} newS value by a string to set such like "130430235959Z" */ this.setString = function (newS) { this.hTLV = null; this.isModified = true; this.s = newS; this.hV = stohex(this.s); }; /** * set value by a Date object * @name setByDateValue * @memberOf KJUR.asn1.DERAbstractTime * @function * @param {Integer} year year of date (ex. 2013) * @param {Integer} month month of date between 1 and 12 (ex. 12) * @param {Integer} day day of month * @param {Integer} hour hours of date * @param {Integer} min minutes of date * @param {Integer} sec seconds of date */ this.setByDateValue = function (year, month, day, hour, min, sec) { var dateObject = new Date(Date.UTC(year, month - 1, day, hour, min, sec, 0)); this.setByDate(dateObject); }; this.getFreshValueHex = function () { return this.hV; }; }; JSX.extend(KJUR.asn1.DERAbstractTime, KJUR.asn1.ASN1Object); // == END DERAbstractTime ================================================== // == BEGIN DERAbstractStructured ============================================ /** * base class for ASN.1 DER structured class * @name KJUR.asn1.DERAbstractStructured * @class base class for ASN.1 DER structured class * @property {Array} asn1Array internal array of ASN1Object * @extends KJUR.asn1.ASN1Object * @description * @see KJUR.asn1.ASN1Object - superclass */ KJUR.asn1.DERAbstractStructured = function (params) { KJUR.asn1.DERAbstractString.superclass.constructor.call(this); var asn1Array = null; /** * set value by array of ASN1Object * @name setByASN1ObjectArray * @memberOf KJUR.asn1.DERAbstractStructured * @function * @param {array} asn1ObjectArray array of ASN1Object to set */ this.setByASN1ObjectArray = function (asn1ObjectArray) { this.hTLV = null; this.isModified = true; this.asn1Array = asn1ObjectArray; }; /** * append an ASN1Object to internal array * @name appendASN1Object * @memberOf KJUR.asn1.DERAbstractStructured * @function * @param {ASN1Object} asn1Object to add */ this.appendASN1Object = function (asn1Object) { this.hTLV = null; this.isModified = true; this.asn1Array.push(asn1Object); }; this.asn1Array = new Array(); if (typeof params != "undefined") { if (typeof params['array'] != "undefined") { this.asn1Array = params['array']; } } }; JSX.extend(KJUR.asn1.DERAbstractStructured, KJUR.asn1.ASN1Object); // ******************************************************************** // ASN.1 Object Classes // ******************************************************************** // ******************************************************************** /** * class for ASN.1 DER Boolean * @name KJUR.asn1.DERBoolean * @class class for ASN.1 DER Boolean * @extends KJUR.asn1.ASN1Object * @description * @see KJUR.asn1.ASN1Object - superclass */ KJUR.asn1.DERBoolean = function () { KJUR.asn1.DERBoolean.superclass.constructor.call(this); this.hT = "01"; this.hTLV = "0101ff"; }; JSX.extend(KJUR.asn1.DERBoolean, KJUR.asn1.ASN1Object); // ******************************************************************** /** * class for ASN.1 DER Integer * @name KJUR.asn1.DERInteger * @class class for ASN.1 DER Integer * @extends KJUR.asn1.ASN1Object * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERInteger = function (params) { KJUR.asn1.DERInteger.superclass.constructor.call(this); this.hT = "02"; /** * set value by Tom Wu's BigInteger object * @name setByBigInteger * @memberOf KJUR.asn1.DERInteger * @function * @param {BigInteger} bigIntegerValue to set */ this.setByBigInteger = function (bigIntegerValue) { this.hTLV = null; this.isModified = true; this.hV = KJUR.asn1.ASN1Util.bigIntToMinTwosComplementsHex(bigIntegerValue); }; /** * set value by integer value * @name setByInteger * @memberOf KJUR.asn1.DERInteger * @function * @param {Integer} integer value to set */ this.setByInteger = function (intValue) { var bi = new BigInteger(String(intValue), 10); this.setByBigInteger(bi); }; /** * set value by integer value * @name setValueHex * @memberOf KJUR.asn1.DERInteger * @function * @param {String} hexadecimal string of integer value * @description *
* NOTE: Value shall be represented by minimum octet length of * two's complement representation. */ this.setValueHex = function (newHexString) { this.hV = newHexString; }; this.getFreshValueHex = function () { return this.hV; }; if (typeof params != "undefined") { if (typeof params['bigint'] != "undefined") { this.setByBigInteger(params['bigint']); } else if (typeof params['int'] != "undefined") { this.setByInteger(params['int']); } else if (typeof params['hex'] != "undefined") { this.setValueHex(params['hex']); } } }; JSX.extend(KJUR.asn1.DERInteger, KJUR.asn1.ASN1Object); // ******************************************************************** /** * class for ASN.1 DER encoded BitString primitive * @name KJUR.asn1.DERBitString * @class class for ASN.1 DER encoded BitString primitive * @extends KJUR.asn1.ASN1Object * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERBitString = function (params) { KJUR.asn1.DERBitString.superclass.constructor.call(this); this.hT = "03"; /** * set ASN.1 value(V) by a hexadecimal string including unused bits * @name setHexValueIncludingUnusedBits * @memberOf KJUR.asn1.DERBitString * @function * @param {String} newHexStringIncludingUnusedBits */ this.setHexValueIncludingUnusedBits = function (newHexStringIncludingUnusedBits) { this.hTLV = null; this.isModified = true; this.hV = newHexStringIncludingUnusedBits; }; /** * set ASN.1 value(V) by unused bit and hexadecimal string of value * @name setUnusedBitsAndHexValue * @memberOf KJUR.asn1.DERBitString * @function * @param {Integer} unusedBits * @param {String} hValue */ this.setUnusedBitsAndHexValue = function (unusedBits, hValue) { if (unusedBits < 0 || 7 < unusedBits) { throw "unused bits shall be from 0 to 7: u = " + unusedBits; } var hUnusedBits = "0" + unusedBits; this.hTLV = null; this.isModified = true; this.hV = hUnusedBits + hValue; }; /** * set ASN.1 DER BitString by binary string * @name setByBinaryString * @memberOf KJUR.asn1.DERBitString * @function * @param {String} binaryString binary value string (i.e. '10111') * @description * Its unused bits will be calculated automatically by length of * 'binaryValue'.
* NOTE: Trailing zeros '0' will be ignored. */ this.setByBinaryString = function (binaryString) { binaryString = binaryString.replace(/0+$/, ''); var unusedBits = 8 - binaryString.length % 8; if (unusedBits == 8) unusedBits = 0; for (var i = 0; i <= unusedBits; i++) { binaryString += '0'; } var h = ''; for (var i = 0; i < binaryString.length - 1; i += 8) { var b = binaryString.substr(i, 8); var x = parseInt(b, 2).toString(16); if (x.length == 1) x = '0' + x; h += x; } this.hTLV = null; this.isModified = true; this.hV = '0' + unusedBits + h; }; /** * set ASN.1 TLV value(V) by an array of boolean * @name setByBooleanArray * @memberOf KJUR.asn1.DERBitString * @function * @param {array} booleanArray array of boolean (ex. [true, false, true]) * @description * NOTE: Trailing falses will be ignored. */ this.setByBooleanArray = function (booleanArray) { var s = ''; for (var i = 0; i < booleanArray.length; i++) { if (booleanArray[i] == true) { s += '1'; } else { s += '0'; } } this.setByBinaryString(s); }; /** * generate an array of false with specified length * @name newFalseArray * @memberOf KJUR.asn1.DERBitString * @function * @param {Integer} nLength length of array to generate * @return {array} array of boolean faluse * @description * This static method may be useful to initialize boolean array. */ this.newFalseArray = function (nLength) { var a = new Array(nLength); for (var i = 0; i < nLength; i++) { a[i] = false; } return a; }; this.getFreshValueHex = function () { return this.hV; }; if (typeof params != "undefined") { if (typeof params['hex'] != "undefined") { this.setHexValueIncludingUnusedBits(params['hex']); } else if (typeof params['bin'] != "undefined") { this.setByBinaryString(params['bin']); } else if (typeof params['array'] != "undefined") { this.setByBooleanArray(params['array']); } } }; JSX.extend(KJUR.asn1.DERBitString, KJUR.asn1.ASN1Object); // ******************************************************************** /** * class for ASN.1 DER OctetString * @name KJUR.asn1.DEROctetString * @class class for ASN.1 DER OctetString * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DEROctetString = function (params) { KJUR.asn1.DEROctetString.superclass.constructor.call(this, params); this.hT = "04"; }; JSX.extend(KJUR.asn1.DEROctetString, KJUR.asn1.DERAbstractString); // ******************************************************************** /** * class for ASN.1 DER Null * @name KJUR.asn1.DERNull * @class class for ASN.1 DER Null * @extends KJUR.asn1.ASN1Object * @description * @see KJUR.asn1.ASN1Object - superclass */ KJUR.asn1.DERNull = function () { KJUR.asn1.DERNull.superclass.constructor.call(this); this.hT = "05"; this.hTLV = "0500"; }; JSX.extend(KJUR.asn1.DERNull, KJUR.asn1.ASN1Object); // ******************************************************************** /** * class for ASN.1 DER ObjectIdentifier * @name KJUR.asn1.DERObjectIdentifier * @class class for ASN.1 DER ObjectIdentifier * @param {Array} params associative array of parameters (ex. {'oid': '2.5.4.5'}) * @extends KJUR.asn1.ASN1Object * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERObjectIdentifier = function (params) { var itox = function (i) { var h = i.toString(16); if (h.length == 1) h = '0' + h; return h; }; var roidtox = function (roid) { var h = ''; var bi = new BigInteger(roid, 10); var b = bi.toString(2); var padLen = 7 - b.length % 7; if (padLen == 7) padLen = 0; var bPad = ''; for (var i = 0; i < padLen; i++) bPad += '0'; b = bPad + b; for (var i = 0; i < b.length - 1; i += 7) { var b8 = b.substr(i, 7); if (i != b.length - 7) b8 = '1' + b8; h += itox(parseInt(b8, 2)); } return h; } KJUR.asn1.DERObjectIdentifier.superclass.constructor.call(this); this.hT = "06"; /** * set value by a hexadecimal string * @name setValueHex * @memberOf KJUR.asn1.DERObjectIdentifier * @function * @param {String} newHexString hexadecimal value of OID bytes */ this.setValueHex = function (newHexString) { this.hTLV = null; this.isModified = true; this.s = null; this.hV = newHexString; }; /** * set value by a OID string * @name setValueOidString * @memberOf KJUR.asn1.DERObjectIdentifier * @function * @param {String} oidString OID string (ex. 2.5.4.13) */ this.setValueOidString = function (oidString) { if (!oidString.match(/^[0-9.]+$/)) { throw "malformed oid string: " + oidString; } var h = ''; var a = oidString.split('.'); var i0 = parseInt(a[0]) * 40 + parseInt(a[1]); h += itox(i0); a.splice(0, 2); for (var i = 0; i < a.length; i++) { h += roidtox(a[i]); } this.hTLV = null; this.isModified = true; this.s = null; this.hV = h; }; /** * set value by a OID name * @name setValueName * @memberOf KJUR.asn1.DERObjectIdentifier * @function * @param {String} oidName OID name (ex. 'serverAuth') * @since 1.0.1 * @description * OID name shall be defined in 'KJUR.asn1.x509.OID.name2oidList'. * Otherwise raise error. */ this.setValueName = function (oidName) { if (typeof KJUR.asn1.x509.OID.name2oidList[oidName] != "undefined") { var oid = KJUR.asn1.x509.OID.name2oidList[oidName]; this.setValueOidString(oid); } else { throw "DERObjectIdentifier oidName undefined: " + oidName; } }; this.getFreshValueHex = function () { return this.hV; }; if (typeof params != "undefined") { if (typeof params['oid'] != "undefined") { this.setValueOidString(params['oid']); } else if (typeof params['hex'] != "undefined") { this.setValueHex(params['hex']); } else if (typeof params['name'] != "undefined") { this.setValueName(params['name']); } } }; JSX.extend(KJUR.asn1.DERObjectIdentifier, KJUR.asn1.ASN1Object); // ******************************************************************** /** * class for ASN.1 DER UTF8String * @name KJUR.asn1.DERUTF8String * @class class for ASN.1 DER UTF8String * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERUTF8String = function (params) { KJUR.asn1.DERUTF8String.superclass.constructor.call(this, params); this.hT = "0c"; }; JSX.extend(KJUR.asn1.DERUTF8String, KJUR.asn1.DERAbstractString); // ******************************************************************** /** * class for ASN.1 DER NumericString * @name KJUR.asn1.DERNumericString * @class class for ASN.1 DER NumericString * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERNumericString = function (params) { KJUR.asn1.DERNumericString.superclass.constructor.call(this, params); this.hT = "12"; }; JSX.extend(KJUR.asn1.DERNumericString, KJUR.asn1.DERAbstractString); // ******************************************************************** /** * class for ASN.1 DER PrintableString * @name KJUR.asn1.DERPrintableString * @class class for ASN.1 DER PrintableString * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERPrintableString = function (params) { KJUR.asn1.DERPrintableString.superclass.constructor.call(this, params); this.hT = "13"; }; JSX.extend(KJUR.asn1.DERPrintableString, KJUR.asn1.DERAbstractString); // ******************************************************************** /** * class for ASN.1 DER TeletexString * @name KJUR.asn1.DERTeletexString * @class class for ASN.1 DER TeletexString * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERTeletexString = function (params) { KJUR.asn1.DERTeletexString.superclass.constructor.call(this, params); this.hT = "14"; }; JSX.extend(KJUR.asn1.DERTeletexString, KJUR.asn1.DERAbstractString); // ******************************************************************** /** * class for ASN.1 DER IA5String * @name KJUR.asn1.DERIA5String * @class class for ASN.1 DER IA5String * @param {Array} params associative array of parameters (ex. {'str': 'aaa'}) * @extends KJUR.asn1.DERAbstractString * @description * @see KJUR.asn1.DERAbstractString - superclass */ KJUR.asn1.DERIA5String = function (params) { KJUR.asn1.DERIA5String.superclass.constructor.call(this, params); this.hT = "16"; }; JSX.extend(KJUR.asn1.DERIA5String, KJUR.asn1.DERAbstractString); // ******************************************************************** /** * class for ASN.1 DER UTCTime * @name KJUR.asn1.DERUTCTime * @class class for ASN.1 DER UTCTime * @param {Array} params associative array of parameters (ex. {'str': '130430235959Z'}) * @extends KJUR.asn1.DERAbstractTime * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. *

EXAMPLES

* @example * var d1 = new KJUR.asn1.DERUTCTime(); * d1.setString('130430125959Z'); * * var d2 = new KJUR.asn1.DERUTCTime({'str': '130430125959Z'}); * * var d3 = new KJUR.asn1.DERUTCTime({'date': new Date(Date.UTC(2015, 0, 31, 0, 0, 0, 0))}); */ KJUR.asn1.DERUTCTime = function (params) { KJUR.asn1.DERUTCTime.superclass.constructor.call(this, params); this.hT = "17"; /** * set value by a Date object * @name setByDate * @memberOf KJUR.asn1.DERUTCTime * @function * @param {Date} dateObject Date object to set ASN.1 value(V) */ this.setByDate = function (dateObject) { this.hTLV = null; this.isModified = true; this.date = dateObject; this.s = this.formatDate(this.date, 'utc'); this.hV = stohex(this.s); }; if (typeof params != "undefined") { if (typeof params['str'] != "undefined") { this.setString(params['str']); } else if (typeof params['hex'] != "undefined") { this.setStringHex(params['hex']); } else if (typeof params['date'] != "undefined") { this.setByDate(params['date']); } } }; JSX.extend(KJUR.asn1.DERUTCTime, KJUR.asn1.DERAbstractTime); // ******************************************************************** /** * class for ASN.1 DER GeneralizedTime * @name KJUR.asn1.DERGeneralizedTime * @class class for ASN.1 DER GeneralizedTime * @param {Array} params associative array of parameters (ex. {'str': '20130430235959Z'}) * @extends KJUR.asn1.DERAbstractTime * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERGeneralizedTime = function (params) { KJUR.asn1.DERGeneralizedTime.superclass.constructor.call(this, params); this.hT = "18"; /** * set value by a Date object * @name setByDate * @memberOf KJUR.asn1.DERGeneralizedTime * @function * @param {Date} dateObject Date object to set ASN.1 value(V) * @example * When you specify UTC time, use 'Date.UTC' method like this:
* var o = new DERUTCTime(); * var date = new Date(Date.UTC(2015, 0, 31, 23, 59, 59, 0)); #2015JAN31 23:59:59 * o.setByDate(date); */ this.setByDate = function (dateObject) { this.hTLV = null; this.isModified = true; this.date = dateObject; this.s = this.formatDate(this.date, 'gen'); this.hV = stohex(this.s); }; if (typeof params != "undefined") { if (typeof params['str'] != "undefined") { this.setString(params['str']); } else if (typeof params['hex'] != "undefined") { this.setStringHex(params['hex']); } else if (typeof params['date'] != "undefined") { this.setByDate(params['date']); } } }; JSX.extend(KJUR.asn1.DERGeneralizedTime, KJUR.asn1.DERAbstractTime); // ******************************************************************** /** * class for ASN.1 DER Sequence * @name KJUR.asn1.DERSequence * @class class for ASN.1 DER Sequence * @extends KJUR.asn1.DERAbstractStructured * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERSequence = function (params) { KJUR.asn1.DERSequence.superclass.constructor.call(this, params); this.hT = "30"; this.getFreshValueHex = function () { var h = ''; for (var i = 0; i < this.asn1Array.length; i++) { var asn1Obj = this.asn1Array[i]; h += asn1Obj.getEncodedHex(); } this.hV = h; return this.hV; }; }; JSX.extend(KJUR.asn1.DERSequence, KJUR.asn1.DERAbstractStructured); // ******************************************************************** /** * class for ASN.1 DER Set * @name KJUR.asn1.DERSet * @class class for ASN.1 DER Set * @extends KJUR.asn1.DERAbstractStructured * @description *
* As for argument 'params' for constructor, you can specify one of * following properties: * * NOTE: 'params' can be omitted. */ KJUR.asn1.DERSet = function (params) { KJUR.asn1.DERSet.superclass.constructor.call(this, params); this.hT = "31"; this.getFreshValueHex = function () { var a = new Array(); for (var i = 0; i < this.asn1Array.length; i++) { var asn1Obj = this.asn1Array[i]; a.push(asn1Obj.getEncodedHex()); } a.sort(); this.hV = a.join(''); return this.hV; }; }; JSX.extend(KJUR.asn1.DERSet, KJUR.asn1.DERAbstractStructured); // ******************************************************************** /** * class for ASN.1 DER TaggedObject * @name KJUR.asn1.DERTaggedObject * @class class for ASN.1 DER TaggedObject * @extends KJUR.asn1.ASN1Object * @description *
* Parameter 'tagNoNex' is ASN.1 tag(T) value for this object. * For example, if you find '[1]' tag in a ASN.1 dump, * 'tagNoHex' will be 'a1'. *
* As for optional argument 'params' for constructor, you can specify *ANY* of * following properties: * * @example * d1 = new KJUR.asn1.DERUTF8String({'str':'a'}); * d2 = new KJUR.asn1.DERTaggedObject({'obj': d1}); * hex = d2.getEncodedHex(); */ KJUR.asn1.DERTaggedObject = function (params) { KJUR.asn1.DERTaggedObject.superclass.constructor.call(this); this.hT = "a0"; this.hV = ''; this.isExplicit = true; this.asn1Object = null; /** * set value by an ASN1Object * @name setString * @memberOf KJUR.asn1.DERTaggedObject * @function * @param {Boolean} isExplicitFlag flag for explicit/implicit tag * @param {Integer} tagNoHex hexadecimal string of ASN.1 tag * @param {ASN1Object} asn1Object ASN.1 to encapsulate */ this.setASN1Object = function (isExplicitFlag, tagNoHex, asn1Object) { this.hT = tagNoHex; this.isExplicit = isExplicitFlag; this.asn1Object = asn1Object; if (this.isExplicit) { this.hV = this.asn1Object.getEncodedHex(); this.hTLV = null; this.isModified = true; } else { this.hV = null; this.hTLV = asn1Object.getEncodedHex(); this.hTLV = this.hTLV.replace(/^../, tagNoHex); this.isModified = false; } }; this.getFreshValueHex = function () { return this.hV; }; if (typeof params != "undefined") { if (typeof params['tag'] != "undefined") { this.hT = params['tag']; } if (typeof params['explicit'] != "undefined") { this.isExplicit = params['explicit']; } if (typeof params['obj'] != "undefined") { this.asn1Object = params['obj']; this.setASN1Object(this.isExplicit, this.hT, this.asn1Object); } } }; JSX.extend(KJUR.asn1.DERTaggedObject, KJUR.asn1.ASN1Object); // Hex JavaScript decoder // Copyright (c) 2008-2013 Lapo Luchini // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. /*jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */ (function (undefined) { "use strict"; var Hex = {}, decoder; Hex.decode = function (a) { var i; if (decoder === undefined) { var hex = "0123456789ABCDEF", ignore = " \f\n\r\t\u00A0\u2028\u2029"; decoder = []; for (i = 0; i < 16; ++i) decoder[hex.charAt(i)] = i; hex = hex.toLowerCase(); for (i = 10; i < 16; ++i) decoder[hex.charAt(i)] = i; for (i = 0; i < ignore.length; ++i) decoder[ignore.charAt(i)] = -1; } var out = [], bits = 0, char_count = 0; for (i = 0; i < a.length; ++i) { var c = a.charAt(i); if (c == '=') break; c = decoder[c]; if (c == -1) continue; if (c === undefined) throw 'Illegal character at offset ' + i; bits |= c; if (++char_count >= 2) { out[out.length] = bits; bits = 0; char_count = 0; } else { bits <<= 4; } } if (char_count) throw "Hex encoding incomplete: 4 bits missing"; return out; }; // export globals window.Hex = Hex; })(); // Base64 JavaScript decoder // Copyright (c) 2008-2013 Lapo Luchini // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. /*jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */ (function (undefined) { "use strict"; var Base64 = {}, decoder; Base64.decode = function (a) { var i; if (decoder === undefined) { var b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/", ignore = "= \f\n\r\t\u00A0\u2028\u2029"; decoder = []; for (i = 0; i < 64; ++i) decoder[b64.charAt(i)] = i; for (i = 0; i < ignore.length; ++i) decoder[ignore.charAt(i)] = -1; } var out = []; var bits = 0, char_count = 0; for (i = 0; i < a.length; ++i) { var c = a.charAt(i); if (c == '=') break; c = decoder[c]; if (c == -1) continue; if (c === undefined) throw 'Illegal character at offset ' + i; bits |= c; if (++char_count >= 4) { out[out.length] = (bits >> 16); out[out.length] = (bits >> 8) & 0xFF; out[out.length] = bits & 0xFF; bits = 0; char_count = 0; } else { bits <<= 6; } } switch (char_count) { case 1: throw "Base64 encoding incomplete: at least 2 bits missing"; case 2: out[out.length] = (bits >> 10); break; case 3: out[out.length] = (bits >> 16); out[out.length] = (bits >> 8) & 0xFF; break; } return out; }; Base64.re = /-----BEGIN [^-]+-----([A-Za-z0-9+\/=\s]+)-----END [^-]+-----|begin-base64[^\n]+\n([A-Za-z0-9+\/=\s]+)====/; Base64.unarmor = function (a) { var m = Base64.re.exec(a); if (m) { if (m[1]) a = m[1]; else if (m[2]) a = m[2]; else throw "RegExp out of sync"; } return Base64.decode(a); }; // export globals window.Base64 = Base64; })(); // ASN.1 JavaScript decoder // Copyright (c) 2008-2013 Lapo Luchini // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR // ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN // ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF // OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. /*jshint browser: true, strict: true, immed: true, latedef: true, undef: true, regexdash: false */ /*global oids */ (function (undefined) { "use strict"; var hardLimit = 100, ellipsis = "\u2026", DOM = { tag: function (tagName, className) { var t = document.createElement(tagName); t.className = className; return t; }, text: function (str) { return document.createTextNode(str); } }; function Stream(enc, pos) { if (enc instanceof Stream) { this.enc = enc.enc; this.pos = enc.pos; } else { this.enc = enc; this.pos = pos; } } Stream.prototype.get = function (pos) { if (pos === undefined) pos = this.pos++; if (pos >= this.enc.length) throw 'Requesting byte offset ' + pos + ' on a stream of length ' + this.enc.length; return this.enc[pos]; }; Stream.prototype.hexDigits = "0123456789ABCDEF"; Stream.prototype.hexByte = function (b) { return this.hexDigits.charAt((b >> 4) & 0xF) + this.hexDigits.charAt(b & 0xF); }; Stream.prototype.hexDump = function (start, end, raw) { var s = ""; for (var i = start; i < end; ++i) { s += this.hexByte(this.get(i)); if (raw !== true) switch (i & 0xF) { case 0x7: s += " "; break; case 0xF: s += "\n"; break; default: s += " "; } } return s; }; Stream.prototype.parseStringISO = function (start, end) { var s = ""; for (var i = start; i < end; ++i) s += String.fromCharCode(this.get(i)); return s; }; Stream.prototype.parseStringUTF = function (start, end) { var s = ""; for (var i = start; i < end;) { var c = this.get(i++); if (c < 128) s += String.fromCharCode(c); else if ((c > 191) && (c < 224)) s += String.fromCharCode(((c & 0x1F) << 6) | (this.get(i++) & 0x3F)); else s += String.fromCharCode(((c & 0x0F) << 12) | ((this.get(i++) & 0x3F) << 6) | (this.get(i++) & 0x3F)); } return s; }; Stream.prototype.parseStringBMP = function (start, end) { var str = "" for (var i = start; i < end; i += 2) { var high_byte = this.get(i); var low_byte = this.get(i + 1); str += String.fromCharCode((high_byte << 8) + low_byte); } return str; }; Stream.prototype.reTime = /^((?:1[89]|2\d)?\d\d)(0[1-9]|1[0-2])(0[1-9]|[12]\d|3[01])([01]\d|2[0-3])(?:([0-5]\d)(?:([0-5]\d)(?:[.,](\d{1,3}))?)?)?(Z|[-+](?:[0]\d|1[0-2])([0-5]\d)?)?$/; Stream.prototype.parseTime = function (start, end) { var s = this.parseStringISO(start, end), m = this.reTime.exec(s); if (!m) return "Unrecognized time: " + s; s = m[1] + "-" + m[2] + "-" + m[3] + " " + m[4]; if (m[5]) { s += ":" + m[5]; if (m[6]) { s += ":" + m[6]; if (m[7]) s += "." + m[7]; } } if (m[8]) { s += " UTC"; if (m[8] != 'Z') { s += m[8]; if (m[9]) s += ":" + m[9]; } } return s; }; Stream.prototype.parseInteger = function (start, end) { //TODO support negative numbers var len = end - start; if (len > 4) { len <<= 3; var s = this.get(start); if (s === 0) len -= 8; else while (s < 128) { s <<= 1; --len; } return "(" + len + " bit)"; } var n = 0; for (var i = start; i < end; ++i) n = (n << 8) | this.get(i); return n; }; Stream.prototype.parseBitString = function (start, end) { var unusedBit = this.get(start), lenBit = ((end - start - 1) << 3) - unusedBit, s = "(" + lenBit + " bit)"; if (lenBit <= 20) { var skip = unusedBit; s += " "; for (var i = end - 1; i > start; --i) { var b = this.get(i); for (var j = skip; j < 8; ++j) s += (b >> j) & 1 ? "1" : "0"; skip = 0; } } return s; }; Stream.prototype.parseOctetString = function (start, end) { var len = end - start, s = "(" + len + " byte) "; if (len > hardLimit) end = start + hardLimit; for (var i = start; i < end; ++i) s += this.hexByte(this.get(i)); //TODO: also try Latin1? if (len > hardLimit) s += ellipsis; return s; }; Stream.prototype.parseOID = function (start, end) { var s = '', n = 0, bits = 0; for (var i = start; i < end; ++i) { var v = this.get(i); n = (n << 7) | (v & 0x7F); bits += 7; if (!(v & 0x80)) { // finished if (s === '') { var m = n < 80 ? n < 40 ? 0 : 1 : 2; s = m + "." + (n - m * 40); } else s += "." + ((bits >= 31) ? "bigint" : n); n = bits = 0; } } return s; }; function ASN1(stream, header, length, tag, sub) { this.stream = stream; this.header = header; this.length = length; this.tag = tag; this.sub = sub; } ASN1.prototype.typeName = function () { if (this.tag === undefined) return "unknown"; var tagClass = this.tag >> 6, tagConstructed = (this.tag >> 5) & 1, tagNumber = this.tag & 0x1F; switch (tagClass) { case 0: // universal switch (tagNumber) { case 0x00: return "EOC"; case 0x01: return "BOOLEAN"; case 0x02: return "INTEGER"; case 0x03: return "BIT_STRING"; case 0x04: return "OCTET_STRING"; case 0x05: return "NULL"; case 0x06: return "OBJECT_IDENTIFIER"; case 0x07: return "ObjectDescriptor"; case 0x08: return "EXTERNAL"; case 0x09: return "REAL"; case 0x0A: return "ENUMERATED"; case 0x0B: return "EMBEDDED_PDV"; case 0x0C: return "UTF8String"; case 0x10: return "SEQUENCE"; case 0x11: return "SET"; case 0x12: return "NumericString"; case 0x13: return "PrintableString"; // ASCII subset case 0x14: return "TeletexString"; // aka T61String case 0x15: return "VideotexString"; case 0x16: return "IA5String"; // ASCII case 0x17: return "UTCTime"; case 0x18: return "GeneralizedTime"; case 0x19: return "GraphicString"; case 0x1A: return "VisibleString"; // ASCII subset case 0x1B: return "GeneralString"; case 0x1C: return "UniversalString"; case 0x1E: return "BMPString"; default: return "Universal_" + tagNumber.toString(16); } case 1: return "Application_" + tagNumber.toString(16); case 2: return "[" + tagNumber + "]"; // Context case 3: return "Private_" + tagNumber.toString(16); } }; ASN1.prototype.reSeemsASCII = /^[ -~]+$/; ASN1.prototype.content = function () { if (this.tag === undefined) return null; var tagClass = this.tag >> 6, tagNumber = this.tag & 0x1F, content = this.posContent(), len = Math.abs(this.length); if (tagClass !== 0) { // universal if (this.sub !== null) return "(" + this.sub.length + " elem)"; //TODO: TRY TO PARSE ASCII STRING var s = this.stream.parseStringISO(content, content + Math.min(len, hardLimit)); if (this.reSeemsASCII.test(s)) return s.substring(0, 2 * hardLimit) + ((s.length > 2 * hardLimit) ? ellipsis : ""); else return this.stream.parseOctetString(content, content + len); } switch (tagNumber) { case 0x01: // BOOLEAN return (this.stream.get(content) === 0) ? "false" : "true"; case 0x02: // INTEGER return this.stream.parseInteger(content, content + len); case 0x03: // BIT_STRING return this.sub ? "(" + this.sub.length + " elem)" : this.stream.parseBitString(content, content + len); case 0x04: // OCTET_STRING return this.sub ? "(" + this.sub.length + " elem)" : this.stream.parseOctetString(content, content + len); //case 0x05: // NULL case 0x06: // OBJECT_IDENTIFIER return this.stream.parseOID(content, content + len); //case 0x07: // ObjectDescriptor //case 0x08: // EXTERNAL //case 0x09: // REAL //case 0x0A: // ENUMERATED //case 0x0B: // EMBEDDED_PDV case 0x10: // SEQUENCE case 0x11: // SET return "(" + this.sub.length + " elem)"; case 0x0C: // UTF8String return this.stream.parseStringUTF(content, content + len); case 0x12: // NumericString case 0x13: // PrintableString case 0x14: // TeletexString case 0x15: // VideotexString case 0x16: // IA5String //case 0x19: // GraphicString case 0x1A: // VisibleString //case 0x1B: // GeneralString //case 0x1C: // UniversalString return this.stream.parseStringISO(content, content + len); case 0x1E: // BMPString return this.stream.parseStringBMP(content, content + len); case 0x17: // UTCTime case 0x18: // GeneralizedTime return this.stream.parseTime(content, content + len); } return null; }; ASN1.prototype.toString = function () { return this.typeName() + "@" + this.stream.pos + "[header:" + this.header + ",length:" + this.length + ",sub:" + ((this.sub === null) ? 'null' : this.sub.length) + "]"; }; ASN1.prototype.print = function (indent) { if (indent === undefined) indent = ''; document.writeln(indent + this); if (this.sub !== null) { indent += ' '; for (var i = 0, max = this.sub.length; i < max; ++i) this.sub[i].print(indent); } }; ASN1.prototype.toPrettyString = function (indent) { if (indent === undefined) indent = ''; var s = indent + this.typeName() + " @" + this.stream.pos; if (this.length >= 0) s += "+"; s += this.length; if (this.tag & 0x20) s += " (constructed)"; else if (((this.tag == 0x03) || (this.tag == 0x04)) && (this.sub !== null)) s += " (encapsulates)"; s += "\n"; if (this.sub !== null) { indent += ' '; for (var i = 0, max = this.sub.length; i < max; ++i) s += this.sub[i].toPrettyString(indent); } return s; }; ASN1.prototype.toDOM = function () { var node = DOM.tag("div", "node"); node.asn1 = this; var head = DOM.tag("div", "head"); var s = this.typeName().replace(/_/g, " "); head.innerHTML = s; var content = this.content(); if (content !== null) { content = String(content).replace(/"; s += "Length: " + this.header + "+"; if (this.length >= 0) s += this.length; else s += (-this.length) + " (undefined)"; if (this.tag & 0x20) s += "
(constructed)"; else if (((this.tag == 0x03) || (this.tag == 0x04)) && (this.sub !== null)) s += "
(encapsulates)"; //TODO if (this.tag == 0x03) s += "Unused bits: " if (content !== null) { s += "
Value:
" + content + ""; if ((typeof oids === 'object') && (this.tag == 0x06)) { var oid = oids[content]; if (oid) { if (oid.d) s += "
" + oid.d; if (oid.c) s += "
" + oid.c; if (oid.w) s += "
(warning!)"; } } } value.innerHTML = s; node.appendChild(value); var sub = DOM.tag("div", "sub"); if (this.sub !== null) { for (var i = 0, max = this.sub.length; i < max; ++i) sub.appendChild(this.sub[i].toDOM()); } node.appendChild(sub); head.onclick = function () { node.className = (node.className == "node collapsed") ? "node" : "node collapsed"; }; return node; }; ASN1.prototype.posStart = function () { return this.stream.pos; }; ASN1.prototype.posContent = function () { return this.stream.pos + this.header; }; ASN1.prototype.posEnd = function () { return this.stream.pos + this.header + Math.abs(this.length); }; ASN1.prototype.fakeHover = function (current) { this.node.className += " hover"; if (current) this.head.className += " hover"; }; ASN1.prototype.fakeOut = function (current) { var re = / ?hover/; this.node.className = this.node.className.replace(re, ""); if (current) this.head.className = this.head.className.replace(re, ""); }; ASN1.prototype.toHexDOM_sub = function (node, className, stream, start, end) { if (start >= end) return; var sub = DOM.tag("span", className); sub.appendChild(DOM.text( stream.hexDump(start, end))); node.appendChild(sub); }; ASN1.prototype.toHexDOM = function (root) { var node = DOM.tag("span", "hex"); if (root === undefined) root = node; this.head.hexNode = node; this.head.onmouseover = function () { this.hexNode.className = "hexCurrent"; }; this.head.onmouseout = function () { this.hexNode.className = "hex"; }; node.asn1 = this; node.onmouseover = function () { var current = !root.selected; if (current) { root.selected = this.asn1; this.className = "hexCurrent"; } this.asn1.fakeHover(current); }; node.onmouseout = function () { var current = (root.selected == this.asn1); this.asn1.fakeOut(current); if (current) { root.selected = null; this.className = "hex"; } }; this.toHexDOM_sub(node, "tag", this.stream, this.posStart(), this.posStart() + 1); this.toHexDOM_sub(node, (this.length >= 0) ? "dlen" : "ulen", this.stream, this.posStart() + 1, this.posContent()); if (this.sub === null) node.appendChild(DOM.text( this.stream.hexDump(this.posContent(), this.posEnd()))); else if (this.sub.length > 0) { var first = this.sub[0]; var last = this.sub[this.sub.length - 1]; this.toHexDOM_sub(node, "intro", this.stream, this.posContent(), first.posStart()); for (var i = 0, max = this.sub.length; i < max; ++i) node.appendChild(this.sub[i].toHexDOM(root)); this.toHexDOM_sub(node, "outro", this.stream, last.posEnd(), this.posEnd()); } return node; }; ASN1.prototype.toHexString = function (root) { return this.stream.hexDump(this.posStart(), this.posEnd(), true); }; ASN1.decodeLength = function (stream) { var buf = stream.get(), len = buf & 0x7F; if (len == buf) return len; if (len > 3) throw "Length over 24 bits not supported at position " + (stream.pos - 1); if (len === 0) return -1; // undefined buf = 0; for (var i = 0; i < len; ++i) buf = (buf << 8) | stream.get(); return buf; }; ASN1.hasContent = function (tag, len, stream) { if (tag & 0x20) // constructed return true; if ((tag < 0x03) || (tag > 0x04)) return false; var p = new Stream(stream); if (tag == 0x03) p.get(); // BitString unused bits, must be in [0, 7] var subTag = p.get(); if ((subTag >> 6) & 0x01) // not (universal or context) return false; try { var subLength = ASN1.decodeLength(p); return ((p.pos - stream.pos) + subLength == len); } catch (exception) { return false; } }; ASN1.decode = function (stream) { if (!(stream instanceof Stream)) stream = new Stream(stream, 0); var streamStart = new Stream(stream), tag = stream.get(), len = ASN1.decodeLength(stream), header = stream.pos - streamStart.pos, sub = null; if (ASN1.hasContent(tag, len, stream)) { // it has content, so we decode it var start = stream.pos; if (tag == 0x03) stream.get(); // skip BitString unused bits, must be in [0, 7] sub = []; if (len >= 0) { // definite length var end = start + len; while (stream.pos < end) sub[sub.length] = ASN1.decode(stream); if (stream.pos != end) throw "Content size is not correct for container starting at offset " + start; } else { // undefined length try { for (;;) { var s = ASN1.decode(stream); if (s.tag === 0) break; sub[sub.length] = s; } len = start - stream.pos; } catch (e) { throw "Exception while decoding undefined length content: " + e; } } } else stream.pos += len; // skip content return new ASN1(streamStart, header, len, tag, sub); }; ASN1.test = function () { var test = [{ value: [0x27], expected: 0x27 }, { value: [0x81, 0xC9], expected: 0xC9 }, { value: [0x83, 0xFE, 0xDC, 0xBA], expected: 0xFEDCBA }]; for (var i = 0, max = test.length; i < max; ++i) { var pos = 0, stream = new Stream(test[i].value, 0), res = ASN1.decodeLength(stream); if (res != test[i].expected) document.write("In hook_windows[" + i + "] expected " + test[i].expected + " got " + res + "\n"); } }; // export globals window.ASN1 = ASN1; })(); /** * Retrieve the hexadecimal value (as a string) of the current ASN.1 element * @returns {string} * @public */ window.ASN1.prototype.getHexStringValue = function () { var hexString = this.toHexString(); var offset = this.header * 2; var length = this.length * 2; return hexString.substr(offset, length); }; /** * Method to parse a pem encoded string containing both a public or private key. * The method will translate the pem encoded string in a der encoded string and * will parse private key and public key parameters. This method accepts public key * in the rsaencryption pkcs #1 format (oid: 1.2.840.113549.1.1.1). * * @todo Check how many rsa formats use the same format of pkcs #1. * * The format is defined as: * PublicKeyInfo ::= SEQUENCE { * algorithm AlgorithmIdentifier, * PublicKey BIT STRING * } * Where AlgorithmIdentifier is: * AlgorithmIdentifier ::= SEQUENCE { * algorithm OBJECT IDENTIFIER, the OID of the enc algorithm * parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1) * } * and PublicKey is a SEQUENCE encapsulated in a BIT STRING * RSAPublicKey ::= SEQUENCE { * modulus INTEGER, -- n * publicExponent INTEGER -- e * } * it's possible to examine the structure of the keys obtained from openssl using * an asn.1 dumper as the one used here to parse the components: http://lapo.it/asn1js/ * @argument {string} pem the pem encoded string, can include the BEGIN/END header/footer * @private */ RSAKey.prototype.parseKey = function (pem) { try { var modulus = 0; var public_exponent = 0; var reHex = /^\s*(?:[0-9A-Fa-f][0-9A-Fa-f]\s*)+$/; var der = reHex.test(pem) ? Hex.decode(pem) : window.Base64.unarmor(pem); var asn1 = window.ASN1.decode(der); //Fixes a bug with OpenSSL 1.0+ private keys if (asn1.sub.length === 3) { asn1 = asn1.sub[2].sub[0]; } if (asn1.sub.length === 9) { // Parse the private key. modulus = asn1.sub[1].getHexStringValue(); //bigint this.n = parseBigInt(modulus, 16); public_exponent = asn1.sub[2].getHexStringValue(); //int this.e = parseInt(public_exponent, 16); var private_exponent = asn1.sub[3].getHexStringValue(); //bigint this.d = parseBigInt(private_exponent, 16); var prime1 = asn1.sub[4].getHexStringValue(); //bigint this.p = parseBigInt(prime1, 16); var prime2 = asn1.sub[5].getHexStringValue(); //bigint this.q = parseBigInt(prime2, 16); var exponent1 = asn1.sub[6].getHexStringValue(); //bigint this.dmp1 = parseBigInt(exponent1, 16); var exponent2 = asn1.sub[7].getHexStringValue(); //bigint this.dmq1 = parseBigInt(exponent2, 16); var coefficient = asn1.sub[8].getHexStringValue(); //bigint this.coeff = parseBigInt(coefficient, 16); } else if (asn1.sub.length === 2) { // Parse the public key. var bit_string = asn1.sub[1]; var sequence = bit_string.sub[0]; modulus = sequence.sub[0].getHexStringValue(); this.n = parseBigInt(modulus, 16); public_exponent = sequence.sub[1].getHexStringValue(); this.e = parseInt(public_exponent, 16); } else { return false; } return true; } catch (ex) { return false; } }; /** * Translate rsa parameters in a hex encoded string representing the rsa key. * * The translation follow the ASN.1 notation : * RSAPrivateKey ::= SEQUENCE { * version Version, * modulus INTEGER, -- n * publicExponent INTEGER, -- e * privateExponent INTEGER, -- d * prime1 INTEGER, -- p * prime2 INTEGER, -- q * exponent1 INTEGER, -- d mod (p1) * exponent2 INTEGER, -- d mod (q-1) * coefficient INTEGER, -- (inverse of q) mod p * } * @returns {string} DER Encoded String representing the rsa private key * @private */ RSAKey.prototype.getPrivateBaseKey = function () { var options = { 'array': [ new KJUR.asn1.DERInteger({ 'int': 0 }), new KJUR.asn1.DERInteger({ 'bigint': this.n }), new KJUR.asn1.DERInteger({ 'int': this.e }), new KJUR.asn1.DERInteger({ 'bigint': this.d }), new KJUR.asn1.DERInteger({ 'bigint': this.p }), new KJUR.asn1.DERInteger({ 'bigint': this.q }), new KJUR.asn1.DERInteger({ 'bigint': this.dmp1 }), new KJUR.asn1.DERInteger({ 'bigint': this.dmq1 }), new KJUR.asn1.DERInteger({ 'bigint': this.coeff }) ] }; var seq = new KJUR.asn1.DERSequence(options); return seq.getEncodedHex(); }; /** * base64 (pem) encoded version of the DER encoded representation * @returns {string} pem encoded representation without header and footer * @public */ RSAKey.prototype.getPrivateBaseKeyB64 = function () { return hex2b64(this.getPrivateBaseKey()); }; /** * Translate rsa parameters in a hex encoded string representing the rsa public key. * The representation follow the ASN.1 notation : * PublicKeyInfo ::= SEQUENCE { * algorithm AlgorithmIdentifier, * PublicKey BIT STRING * } * Where AlgorithmIdentifier is: * AlgorithmIdentifier ::= SEQUENCE { * algorithm OBJECT IDENTIFIER, the OID of the enc algorithm * parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1) * } * and PublicKey is a SEQUENCE encapsulated in a BIT STRING * RSAPublicKey ::= SEQUENCE { * modulus INTEGER, -- n * publicExponent INTEGER -- e * } * @returns {string} DER Encoded String representing the rsa public key * @private */ RSAKey.prototype.getPublicBaseKey = function () { var options = { 'array': [ new KJUR.asn1.DERObjectIdentifier({ 'oid': '1.2.840.113549.1.1.1' }), //RSA Encryption pkcs #1 oid new KJUR.asn1.DERNull() ] }; var first_sequence = new KJUR.asn1.DERSequence(options); options = { 'array': [ new KJUR.asn1.DERInteger({ 'bigint': this.n }), new KJUR.asn1.DERInteger({ 'int': this.e }) ] }; var second_sequence = new KJUR.asn1.DERSequence(options); options = { 'hex': '00' + second_sequence.getEncodedHex() }; var bit_string = new KJUR.asn1.DERBitString(options); options = { 'array': [ first_sequence, bit_string ] }; var seq = new KJUR.asn1.DERSequence(options); return seq.getEncodedHex(); }; /** * base64 (pem) encoded version of the DER encoded representation * @returns {string} pem encoded representation without header and footer * @public */ RSAKey.prototype.getPublicBaseKeyB64 = function () { return hex2b64(this.getPublicBaseKey()); }; /** * wrap the string in block of width chars. The default value for rsa keys is 64 * characters. * @param {string} str the pem encoded string without header and footer * @param {Number} [width=64] - the length the string has to be wrapped at * @returns {string} * @private */ RSAKey.prototype.wordwrap = function (str, width) { width = width || 64; if (!str) { return str; } var regex = '(.{1,' + width + '})( +|$\n?)|(.{1,' + width + '})'; return str.match(RegExp(regex, 'g')).join('\n'); }; /** * Retrieve the pem encoded private key * @returns {string} the pem encoded private key with header/footer * @public */ RSAKey.prototype.getPrivateKey = function () { var key = "-----BEGIN RSA PRIVATE KEY-----\n"; key += this.wordwrap(this.getPrivateBaseKeyB64()) + "\n"; key += "-----END RSA PRIVATE KEY-----"; return key; }; /** * Retrieve the pem encoded public key * @returns {string} the pem encoded public key with header/footer * @public */ RSAKey.prototype.getPublicKey = function () { var key = "-----BEGIN PUBLIC KEY-----\n"; key += this.wordwrap(this.getPublicBaseKeyB64()) + "\n"; key += "-----END PUBLIC KEY-----"; return key; }; /** * Check if the object contains the necessary parameters to populate the rsa modulus * and public exponent parameters. * @param {Object} [obj={}] - An object that may contain the two public key * parameters * @returns {boolean} true if the object contains both the modulus and the public exponent * properties (n and e) * @todo check for types of n and e. N should be a parseable bigInt object, E should * be a parseable integer number * @private */ RSAKey.prototype.hasPublicKeyProperty = function (obj) { obj = obj || {}; return ( obj.hasOwnProperty('n') && obj.hasOwnProperty('e') ); }; /** * Check if the object contains ALL the parameters of an RSA key. * @param {Object} [obj={}] - An object that may contain nine rsa key * parameters * @returns {boolean} true if the object contains all the parameters needed * @todo check for types of the parameters all the parameters but the public exponent * should be parseable bigint objects, the public exponent should be a parseable integer number * @private */ RSAKey.prototype.hasPrivateKeyProperty = function (obj) { obj = obj || {}; return ( obj.hasOwnProperty('n') && obj.hasOwnProperty('e') && obj.hasOwnProperty('d') && obj.hasOwnProperty('p') && obj.hasOwnProperty('q') && obj.hasOwnProperty('dmp1') && obj.hasOwnProperty('dmq1') && obj.hasOwnProperty('coeff') ); }; /** * Parse the properties of obj in the current rsa object. Obj should AT LEAST * include the modulus and public exponent (n, e) parameters. * @param {Object} obj - the object containing rsa parameters * @private */ RSAKey.prototype.parsePropertiesFrom = function (obj) { this.n = obj.n; this.e = obj.e; if (obj.hasOwnProperty('d')) { this.d = obj.d; this.p = obj.p; this.q = obj.q; this.dmp1 = obj.dmp1; this.dmq1 = obj.dmq1; this.coeff = obj.coeff; } }; /** * Create a new JSEncryptRSAKey that extends Tom Wu's RSA key object. * This object is just a decorator for parsing the key parameter * @param {string|Object} key - The key in string format, or an object containing * the parameters needed to build a RSAKey object. * @constructor */ var JSEncryptRSAKey = function (key) { // Call the super constructor. RSAKey.call(this); // If a key key was provided. if (key) { // If this is a string... if (typeof key === 'string') { this.parseKey(key); } else if ( this.hasPrivateKeyProperty(key) || this.hasPublicKeyProperty(key) ) { // Set the values for the key. this.parsePropertiesFrom(key); } } }; // Derive from RSAKey. JSEncryptRSAKey.prototype = new RSAKey(); // Reset the contructor. JSEncryptRSAKey.prototype.constructor = JSEncryptRSAKey; /** * * @param {Object} [options = {}] - An object to customize JSEncrypt behaviour * possible parameters are: * - default_key_size {number} default: 1024 the key size in bit * - default_public_exponent {string} default: '010001' the hexadecimal representation of the public exponent * - log {boolean} default: false whether log warn/error or not * @constructor */ var JSEncrypt = function (options) { options = options || {}; this.default_key_size = parseInt(options.default_key_size) || 1024; this.default_public_exponent = options.default_public_exponent || '010001'; //65537 default openssl public exponent for rsa key type this.log = options.log || false; // The private and public key. this.key = null; }; /** * Method to set the rsa key parameter (one method is enough to set both the public * and the private key, since the private key contains the public key paramenters) * Log a warning if logs are enabled * @param {Object|string} key the pem encoded string or an object (with or without header/footer) * @public */ JSEncrypt.prototype.setKey = function (key) { if (this.log && this.key) { console.warn('A key was already set, overriding existing.'); } this.key = new JSEncryptRSAKey(key); }; /** * Proxy method for setKey, for api compatibility * @see setKey * @public */ JSEncrypt.prototype.setPrivateKey = function (privkey) { // Create the key. this.setKey(privkey); }; /** * Proxy method for setKey, for api compatibility * @see setKey * @public */ JSEncrypt.prototype.setPublicKey = function (pubkey) { // Sets the public key. this.setKey(pubkey); }; /** * Proxy method for RSAKey object's decrypt, decrypt the string using the private * components of the rsa key object. Note that if the object was not set will be created * on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor * @param {string} string base64 encoded crypted string to decrypt * @return {string} the decrypted string * @public */ JSEncrypt.prototype.private_decrypt = function (string) { // Return the decrypted string. try { return this.getKey().decrypt_private(b64tohex(string)); } catch (ex) { return false; } }; JSEncrypt.prototype.public_decrypt = function (string) { // Return the decrypted string. try { return this.getKey().decrypt_public(b64tohex(string)); } catch (ex) { return false; } }; /** * Proxy method for RSAKey object's encrypt, encrypt the string using the public * components of the rsa key object. Note that if the object was not set will be created * on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor * @param {string} string the string to encrypt * @return {string} the encrypted string encoded in base64 * @public */ JSEncrypt.prototype.public_encrypt = function (string) { // Return the encrypted string. try { return hex2b64(this.getKey().encrypt_public(string)); } catch (ex) { return false; } }; JSEncrypt.prototype.private_encrypt = function (str) { // Return the encrypted string. try { return hex2b64(this.getKey().encrypt_private(str)); } catch (ex) { return false; } }; JSEncrypt.prototype.setPublic = RSASetPublic; /** * Getter for the current JSEncryptRSAKey object. If it doesn't exists a new object * will be created and returned * @param {callback} [cb] the callback to be called if we want the key to be generated * in an async fashion * @returns {JSEncryptRSAKey} the JSEncryptRSAKey object * @public */ JSEncrypt.prototype.getKey = function (cb) { // Only create new if it does not exist. if (!this.key) { // Get a new private key. this.key = new JSEncryptRSAKey(); if (cb && {}.toString.call(cb) === '[object Function]') { this.key.generateAsync(this.default_key_size, this.default_public_exponent, cb); return; } // Generate the key. this.key.generate(this.default_key_size, this.default_public_exponent); } return this.key; }; /** * Returns the pem encoded representation of the private key * If the key doesn't exists a new key will be created * @returns {string} pem encoded representation of the private key WITH header and footer * @public */ JSEncrypt.prototype.getPrivateKey = function () { // Return the private representation of this key. return this.getKey().getPrivateKey(); }; /** * Returns the pem encoded representation of the private key * If the key doesn't exists a new key will be created * @returns {string} pem encoded representation of the private key WITHOUT header and footer * @public */ JSEncrypt.prototype.getPrivateKeyB64 = function () { // Return the private representation of this key. return this.getKey().getPrivateBaseKeyB64(); }; /** * Returns the pem encoded representation of the public key * If the key doesn't exists a new key will be created * @returns {string} pem encoded representation of the public key WITH header and footer * @public */ JSEncrypt.prototype.getPublicKey = function () { // Return the private representation of this key. return this.getKey().getPublicKey(); }; /** * Returns the pem encoded representation of the public key * If the key doesn't exists a new key will be created * @returns {string} pem encoded representation of the public key WITHOUT header and footer * @public */ JSEncrypt.prototype.getPublicKeyB64 = function () { // Return the private representation of this key. return this.getKey().getPublicBaseKeyB64(); }; JSEncrypt.prototype.setPrivate = RSASetPrivate; JSEncrypt.prototype.setPrivateEx = RSASetPrivateEx; JSEncrypt.prototype.public_encryptLong = function (string, padding, output) { var k = this.getKey(); var maxLength = (((k.n.bitLength() + 7) >> 3) - 11); try { var lt = ""; var ct = ""; if (string.length > maxLength) { lt = string.match(eval("/.{1," + maxLength + "}/g")); lt.forEach(function (entry) { var t1 = k.encrypt_public(entry, padding); ct += t1; }); return output ? hex2b64(ct) : ct; } var t = k.encrypt_public(string, padding); var y = output ? hex2b64(t) : t; return y; } catch (ex) { return false; } }; JSEncrypt.prototype.private_decryptLong = function (string, padding, output) { var k = this.getKey(); var maxLength = (((k.n.bitLength() + 7) >> 3) - 11); var MAX_DECRYPT_BLOCK = parseInt((k.n.bitLength() + 1) / 4); try { var ct = ""; string = output ? b64tohex(string) : string; if (string.length > maxLength) { var lt = string.match(eval("/.{1," + MAX_DECRYPT_BLOCK + "}/g")); lt.forEach(function (entry) { var t1 = k.decrypt_private(entry, padding); ct += t1; }); return ct; } var y = k.decrypt_private(string, padding); return y; } catch (ex) { return false; } }; JSEncrypt.prototype.private_encryptLong = function (string, padding, output) { var k = this.getKey(); var maxLength = (((k.n.bitLength() + 7) >> 3) - 11); try { var lt = ""; var ct = ""; if (string.length > maxLength) { lt = string.match(eval("/.{1," + maxLength + "}/g")); lt.forEach(function (entry) { var t1 = k.encrypt_private(entry, padding); ct += t1; }); return output ? hex2b64(ct) : ct; } var t = k.encrypt_private(string, padding); var y = output ? hex2b64(t) : t; return y; } catch (ex) { return false; } }; JSEncrypt.prototype.public_decryptLong = function (string, padding, output) { var k = this.getKey(); var maxLength = (((k.n.bitLength() + 7) >> 3) - 11); var MAX_DECRYPT_BLOCK = parseInt((k.n.bitLength() + 1) / 4); try { var ct = ""; string = output ? b64tohex(string) : string; if (string.length > maxLength) { var lt = string.match(eval("/.{1," + MAX_DECRYPT_BLOCK + "}/g")); lt.forEach(function (entry) { var t1 = k.decrypt_public(entry, padding); ct += t1; }); return ct; } var y = k.decrypt_public(string, padding); return y; } catch (ex) { return false; } }; JSEncrypt.version = '2.3.0'; exports.JSEncrypt = JSEncrypt; })(RSA); function AES_Encrypt(word, key, iv) { var srcs = CryptoJS.enc.Utf8.parse(word); var encrypted = CryptoJS.AES.encrypt(srcs, CryptoJS.enc.Utf8.parse(key), { iv: CryptoJS.enc.Utf8.parse(iv), mode: CryptoJS.mode.CBC, padding: CryptoJS.pad.Pkcs7 }); return encrypted.toString(); } function RSA_Encrypt(plain_text) { var public_key = "-----BEGIN PUBLIC KEY-----\nMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDnOWe/gs033L/2/xR3oi6SLAMP\nBY5VledUqqH6dbCNOdrGX4xW+1x6NUfvmwpHRBA2C7xWDDvOIldTl0rMtERTDy9h\nomrVqEcW6/TY+dSVFL3e2Yg2sVaehHv7FhmATkgfC2FcXt8Wvm99QpKRSrGKpcFY\nJwOj2F8hJh+rTG0IPQIDAQAB\n-----END PUBLIC KEY-----"; var Crypt = new RSA.JSEncrypt(); Crypt.setPublicKey(public_key); var enc_str = Crypt.public_encryptLong(plain_text, 2, true); return enc_str; } function getPoints(x) { var s = 65; var text = "[65,285,48]" var time = 48; while (s < x) { s = RandomNum(5, 20) + s; yy = RandomNum(285, 260); time = time + RandomNum(5, 20); text = text + ",[" + s + "," + yy + "," + time + "]" } return text; } function RandomNum(Min, Max) { var Range = Max - Min; var Rand = Math.random(); var num = Min + Math.floor(Rand * Range); return num; }