mirror of
https://github.com/luzhisheng/js_reverse.git
synced 2025-04-20 10:25:01 +08:00
819 lines
38 KiB
Python
819 lines
38 KiB
Python
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
||
"""
|
||
Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
|
||
|
||
Format | `export.py --include` | Model
|
||
--- | --- | ---
|
||
PyTorch | - | yolov5s.pt
|
||
TorchScript | `torchscript` | yolov5s.torchscript
|
||
ONNX | `onnx` | yolov5s.onnx
|
||
OpenVINO | `openvino` | yolov5s_openvino_model/
|
||
TensorRT | `engine` | yolov5s.engine
|
||
CoreML | `coreml` | yolov5s.mlmodel
|
||
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
|
||
TensorFlow GraphDef | `pb` | yolov5s.pb
|
||
TensorFlow Lite | `tflite` | yolov5s.tflite
|
||
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
|
||
TensorFlow.js | `tfjs` | yolov5s_web_model/
|
||
PaddlePaddle | `paddle` | yolov5s_paddle_model/
|
||
|
||
Requirements:
|
||
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
|
||
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
|
||
|
||
Usage:
|
||
$ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
|
||
|
||
Inference:
|
||
$ python detect.py --weights yolov5s.pt # PyTorch
|
||
yolov5s.torchscript # TorchScript
|
||
yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn
|
||
yolov5s_openvino_model # OpenVINO
|
||
yolov5s.engine # TensorRT
|
||
yolov5s.mlmodel # CoreML (macOS-only)
|
||
yolov5s_saved_model # TensorFlow SavedModel
|
||
yolov5s.pb # TensorFlow GraphDef
|
||
yolov5s.tflite # TensorFlow Lite
|
||
yolov5s_edgetpu.tflite # TensorFlow Edge TPU
|
||
yolov5s_paddle_model # PaddlePaddle
|
||
|
||
TensorFlow.js:
|
||
$ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
|
||
$ npm install
|
||
$ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
|
||
$ npm start
|
||
"""
|
||
|
||
import argparse
|
||
import contextlib
|
||
import json
|
||
import os
|
||
import platform
|
||
import re
|
||
import subprocess
|
||
import sys
|
||
import time
|
||
import warnings
|
||
from pathlib import Path
|
||
|
||
import pandas as pd
|
||
import torch
|
||
from torch.utils.mobile_optimizer import optimize_for_mobile
|
||
|
||
FILE = Path(__file__).resolve()
|
||
ROOT = FILE.parents[0] # YOLOv5 root directory
|
||
if str(ROOT) not in sys.path:
|
||
sys.path.append(str(ROOT)) # add ROOT to PATH
|
||
if platform.system() != 'Windows':
|
||
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
||
|
||
from models.experimental import attempt_load
|
||
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
|
||
from utils.dataloaders import LoadImages
|
||
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
|
||
check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
|
||
from utils.torch_utils import select_device, smart_inference_mode
|
||
|
||
MACOS = platform.system() == 'Darwin' # macOS environment
|
||
|
||
|
||
class iOSModel(torch.nn.Module):
|
||
|
||
def __init__(self, model, im):
|
||
super().__init__()
|
||
b, c, h, w = im.shape # batch, channel, height, width
|
||
self.model = model
|
||
self.nc = model.nc # number of classes
|
||
if w == h:
|
||
self.normalize = 1. / w
|
||
else:
|
||
self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]) # broadcast (slower, smaller)
|
||
# np = model(im)[0].shape[1] # number of points
|
||
# self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]).expand(np, 4) # explicit (faster, larger)
|
||
|
||
def forward(self, x):
|
||
xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1)
|
||
return cls * conf, xywh * self.normalize # confidence (3780, 80), coordinates (3780, 4)
|
||
|
||
|
||
def export_formats():
|
||
# YOLOv5 export formats
|
||
x = [
|
||
['PyTorch', '-', '.pt', True, True],
|
||
['TorchScript', 'torchscript', '.torchscript', True, True],
|
||
['ONNX', 'onnx', '.onnx', True, True],
|
||
['OpenVINO', 'openvino', '_openvino_model', True, False],
|
||
['TensorRT', 'engine', '.engine', False, True],
|
||
['CoreML', 'coreml', '.mlmodel', True, False],
|
||
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
|
||
['TensorFlow GraphDef', 'pb', '.pb', True, True],
|
||
['TensorFlow Lite', 'tflite', '.tflite', True, False],
|
||
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
|
||
['TensorFlow.js', 'tfjs', '_web_model', False, False],
|
||
['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
|
||
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
|
||
|
||
|
||
def try_export(inner_func):
|
||
# YOLOv5 export decorator, i..e @try_export
|
||
inner_args = get_default_args(inner_func)
|
||
|
||
def outer_func(*args, **kwargs):
|
||
prefix = inner_args['prefix']
|
||
try:
|
||
with Profile() as dt:
|
||
f, model = inner_func(*args, **kwargs)
|
||
LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
|
||
return f, model
|
||
except Exception as e:
|
||
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
|
||
return None, None
|
||
|
||
return outer_func
|
||
|
||
|
||
@try_export
|
||
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
||
# YOLOv5 TorchScript model export
|
||
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
||
f = file.with_suffix('.torchscript')
|
||
|
||
ts = torch.jit.trace(model, im, strict=False)
|
||
d = {'shape': im.shape, 'stride': int(max(model.stride)), 'names': model.names}
|
||
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
||
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
||
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
||
else:
|
||
ts.save(str(f), _extra_files=extra_files)
|
||
return f, None
|
||
|
||
|
||
@try_export
|
||
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
|
||
# YOLOv5 ONNX export
|
||
check_requirements('onnx>=1.12.0')
|
||
import onnx
|
||
|
||
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
||
f = file.with_suffix('.onnx')
|
||
|
||
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
|
||
if dynamic:
|
||
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
|
||
if isinstance(model, SegmentationModel):
|
||
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
||
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
|
||
elif isinstance(model, DetectionModel):
|
||
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
||
|
||
torch.onnx.export(
|
||
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
|
||
im.cpu() if dynamic else im,
|
||
f,
|
||
verbose=False,
|
||
opset_version=opset,
|
||
do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
|
||
input_names=['images'],
|
||
output_names=output_names,
|
||
dynamic_axes=dynamic or None)
|
||
|
||
# Checks
|
||
model_onnx = onnx.load(f) # load onnx model
|
||
onnx.checker.check_model(model_onnx) # check onnx model
|
||
|
||
# Metadata
|
||
d = {'stride': int(max(model.stride)), 'names': model.names}
|
||
for k, v in d.items():
|
||
meta = model_onnx.metadata_props.add()
|
||
meta.key, meta.value = k, str(v)
|
||
onnx.save(model_onnx, f)
|
||
|
||
# Simplify
|
||
if simplify:
|
||
try:
|
||
cuda = torch.cuda.is_available()
|
||
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
|
||
import onnxsim
|
||
|
||
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
||
model_onnx, check = onnxsim.simplify(model_onnx)
|
||
assert check, 'assert check failed'
|
||
onnx.save(model_onnx, f)
|
||
except Exception as e:
|
||
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
||
return f, model_onnx
|
||
|
||
|
||
@try_export
|
||
def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
|
||
# YOLOv5 OpenVINO export
|
||
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
||
import openvino.inference_engine as ie
|
||
|
||
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
|
||
f = str(file).replace('.pt', f'_openvino_model{os.sep}')
|
||
|
||
args = [
|
||
'mo',
|
||
'--input_model',
|
||
str(file.with_suffix('.onnx')),
|
||
'--output_dir',
|
||
f,
|
||
'--data_type',
|
||
('FP16' if half else 'FP32'),]
|
||
subprocess.run(args, check=True, env=os.environ) # export
|
||
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
||
return f, None
|
||
|
||
|
||
@try_export
|
||
def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
|
||
# YOLOv5 Paddle export
|
||
check_requirements(('paddlepaddle', 'x2paddle'))
|
||
import x2paddle
|
||
from x2paddle.convert import pytorch2paddle
|
||
|
||
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
|
||
f = str(file).replace('.pt', f'_paddle_model{os.sep}')
|
||
|
||
pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export
|
||
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
||
return f, None
|
||
|
||
|
||
@try_export
|
||
def export_coreml(model, im, file, int8, half, nms, prefix=colorstr('CoreML:')):
|
||
# YOLOv5 CoreML export
|
||
check_requirements('coremltools')
|
||
import coremltools as ct
|
||
|
||
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
||
f = file.with_suffix('.mlmodel')
|
||
|
||
if nms:
|
||
model = iOSModel(model, im)
|
||
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
||
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
||
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
|
||
if bits < 32:
|
||
if MACOS: # quantization only supported on macOS
|
||
with warnings.catch_warnings():
|
||
warnings.filterwarnings('ignore', category=DeprecationWarning) # suppress numpy==1.20 float warning
|
||
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
||
else:
|
||
print(f'{prefix} quantization only supported on macOS, skipping...')
|
||
ct_model.save(f)
|
||
return f, ct_model
|
||
|
||
|
||
@try_export
|
||
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
||
# YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
|
||
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
|
||
try:
|
||
import tensorrt as trt
|
||
except Exception:
|
||
if platform.system() == 'Linux':
|
||
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
|
||
import tensorrt as trt
|
||
|
||
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
|
||
grid = model.model[-1].anchor_grid
|
||
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
|
||
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
||
model.model[-1].anchor_grid = grid
|
||
else: # TensorRT >= 8
|
||
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
|
||
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
||
onnx = file.with_suffix('.onnx')
|
||
|
||
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
||
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
|
||
f = file.with_suffix('.engine') # TensorRT engine file
|
||
logger = trt.Logger(trt.Logger.INFO)
|
||
if verbose:
|
||
logger.min_severity = trt.Logger.Severity.VERBOSE
|
||
|
||
builder = trt.Builder(logger)
|
||
config = builder.create_builder_config()
|
||
config.max_workspace_size = workspace * 1 << 30
|
||
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
|
||
|
||
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
|
||
network = builder.create_network(flag)
|
||
parser = trt.OnnxParser(network, logger)
|
||
if not parser.parse_from_file(str(onnx)):
|
||
raise RuntimeError(f'failed to load ONNX file: {onnx}')
|
||
|
||
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
||
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
||
for inp in inputs:
|
||
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
||
for out in outputs:
|
||
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
||
|
||
if dynamic:
|
||
if im.shape[0] <= 1:
|
||
LOGGER.warning(f'{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument')
|
||
profile = builder.create_optimization_profile()
|
||
for inp in inputs:
|
||
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
|
||
config.add_optimization_profile(profile)
|
||
|
||
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
|
||
if builder.platform_has_fast_fp16 and half:
|
||
config.set_flag(trt.BuilderFlag.FP16)
|
||
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
||
t.write(engine.serialize())
|
||
return f, None
|
||
|
||
|
||
@try_export
|
||
def export_saved_model(model,
|
||
im,
|
||
file,
|
||
dynamic,
|
||
tf_nms=False,
|
||
agnostic_nms=False,
|
||
topk_per_class=100,
|
||
topk_all=100,
|
||
iou_thres=0.45,
|
||
conf_thres=0.25,
|
||
keras=False,
|
||
prefix=colorstr('TensorFlow SavedModel:')):
|
||
# YOLOv5 TensorFlow SavedModel export
|
||
try:
|
||
import tensorflow as tf
|
||
except Exception:
|
||
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
|
||
import tensorflow as tf
|
||
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
||
|
||
from models.tf import TFModel
|
||
|
||
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||
f = str(file).replace('.pt', '_saved_model')
|
||
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
||
|
||
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
||
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
|
||
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
||
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
|
||
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
||
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
||
keras_model.trainable = False
|
||
keras_model.summary()
|
||
if keras:
|
||
keras_model.save(f, save_format='tf')
|
||
else:
|
||
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
|
||
m = tf.function(lambda x: keras_model(x)) # full model
|
||
m = m.get_concrete_function(spec)
|
||
frozen_func = convert_variables_to_constants_v2(m)
|
||
tfm = tf.Module()
|
||
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
|
||
tfm.__call__(im)
|
||
tf.saved_model.save(tfm,
|
||
f,
|
||
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
|
||
tf.__version__, '2.6') else tf.saved_model.SaveOptions())
|
||
return f, keras_model
|
||
|
||
|
||
@try_export
|
||
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
||
# YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
||
import tensorflow as tf
|
||
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
||
|
||
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||
f = file.with_suffix('.pb')
|
||
|
||
m = tf.function(lambda x: keras_model(x)) # full model
|
||
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
||
frozen_func = convert_variables_to_constants_v2(m)
|
||
frozen_func.graph.as_graph_def()
|
||
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
||
return f, None
|
||
|
||
|
||
@try_export
|
||
def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
||
# YOLOv5 TensorFlow Lite export
|
||
import tensorflow as tf
|
||
|
||
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
||
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
||
f = str(file).replace('.pt', '-fp16.tflite')
|
||
|
||
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
||
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
||
converter.target_spec.supported_types = [tf.float16]
|
||
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
||
if int8:
|
||
from models.tf import representative_dataset_gen
|
||
dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
|
||
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
|
||
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
||
converter.target_spec.supported_types = []
|
||
converter.inference_input_type = tf.uint8 # or tf.int8
|
||
converter.inference_output_type = tf.uint8 # or tf.int8
|
||
converter.experimental_new_quantizer = True
|
||
f = str(file).replace('.pt', '-int8.tflite')
|
||
if nms or agnostic_nms:
|
||
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
|
||
|
||
tflite_model = converter.convert()
|
||
open(f, 'wb').write(tflite_model)
|
||
return f, None
|
||
|
||
|
||
@try_export
|
||
def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
|
||
# YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
||
cmd = 'edgetpu_compiler --version'
|
||
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
||
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
||
if subprocess.run(f'{cmd} > /dev/null 2>&1', shell=True).returncode != 0:
|
||
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
|
||
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
||
for c in (
|
||
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
||
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
||
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
|
||
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
||
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
||
|
||
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
||
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
|
||
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
|
||
|
||
subprocess.run([
|
||
'edgetpu_compiler',
|
||
'-s',
|
||
'-d',
|
||
'-k',
|
||
'10',
|
||
'--out_dir',
|
||
str(file.parent),
|
||
f_tfl,], check=True)
|
||
return f, None
|
||
|
||
|
||
@try_export
|
||
def export_tfjs(file, int8, prefix=colorstr('TensorFlow.js:')):
|
||
# YOLOv5 TensorFlow.js export
|
||
check_requirements('tensorflowjs')
|
||
import tensorflowjs as tfjs
|
||
|
||
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
||
f = str(file).replace('.pt', '_web_model') # js dir
|
||
f_pb = file.with_suffix('.pb') # *.pb path
|
||
f_json = f'{f}/model.json' # *.json path
|
||
|
||
args = [
|
||
'tensorflowjs_converter',
|
||
'--input_format=tf_frozen_model',
|
||
'--quantize_uint8' if int8 else '',
|
||
'--output_node_names=Identity,Identity_1,Identity_2,Identity_3',
|
||
str(f_pb),
|
||
str(f),]
|
||
subprocess.run([arg for arg in args if arg], check=True)
|
||
|
||
json = Path(f_json).read_text()
|
||
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
||
subst = re.sub(
|
||
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
||
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
||
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
||
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
|
||
r'"Identity_1": {"name": "Identity_1"}, '
|
||
r'"Identity_2": {"name": "Identity_2"}, '
|
||
r'"Identity_3": {"name": "Identity_3"}}}', json)
|
||
j.write(subst)
|
||
return f, None
|
||
|
||
|
||
def add_tflite_metadata(file, metadata, num_outputs):
|
||
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
|
||
with contextlib.suppress(ImportError):
|
||
# check_requirements('tflite_support')
|
||
from tflite_support import flatbuffers
|
||
from tflite_support import metadata as _metadata
|
||
from tflite_support import metadata_schema_py_generated as _metadata_fb
|
||
|
||
tmp_file = Path('/tmp/meta.txt')
|
||
with open(tmp_file, 'w') as meta_f:
|
||
meta_f.write(str(metadata))
|
||
|
||
model_meta = _metadata_fb.ModelMetadataT()
|
||
label_file = _metadata_fb.AssociatedFileT()
|
||
label_file.name = tmp_file.name
|
||
model_meta.associatedFiles = [label_file]
|
||
|
||
subgraph = _metadata_fb.SubGraphMetadataT()
|
||
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
|
||
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
|
||
model_meta.subgraphMetadata = [subgraph]
|
||
|
||
b = flatbuffers.Builder(0)
|
||
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
|
||
metadata_buf = b.Output()
|
||
|
||
populator = _metadata.MetadataPopulator.with_model_file(file)
|
||
populator.load_metadata_buffer(metadata_buf)
|
||
populator.load_associated_files([str(tmp_file)])
|
||
populator.populate()
|
||
tmp_file.unlink()
|
||
|
||
|
||
def pipeline_coreml(model, im, file, names, y, prefix=colorstr('CoreML Pipeline:')):
|
||
# YOLOv5 CoreML pipeline
|
||
import coremltools as ct
|
||
from PIL import Image
|
||
|
||
print(f'{prefix} starting pipeline with coremltools {ct.__version__}...')
|
||
batch_size, ch, h, w = list(im.shape) # BCHW
|
||
t = time.time()
|
||
|
||
# Output shapes
|
||
spec = model.get_spec()
|
||
out0, out1 = iter(spec.description.output)
|
||
if platform.system() == 'Darwin':
|
||
img = Image.new('RGB', (w, h)) # img(192 width, 320 height)
|
||
# img = torch.zeros((*opt.img_size, 3)).numpy() # img size(320,192,3) iDetection
|
||
out = model.predict({'image': img})
|
||
out0_shape, out1_shape = out[out0.name].shape, out[out1.name].shape
|
||
else: # linux and windows can not run model.predict(), get sizes from pytorch output y
|
||
s = tuple(y[0].shape)
|
||
out0_shape, out1_shape = (s[1], s[2] - 5), (s[1], 4) # (3780, 80), (3780, 4)
|
||
|
||
# Checks
|
||
nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
|
||
na, nc = out0_shape
|
||
# na, nc = out0.type.multiArrayType.shape # number anchors, classes
|
||
assert len(names) == nc, f'{len(names)} names found for nc={nc}' # check
|
||
|
||
# Define output shapes (missing)
|
||
out0.type.multiArrayType.shape[:] = out0_shape # (3780, 80)
|
||
out1.type.multiArrayType.shape[:] = out1_shape # (3780, 4)
|
||
# spec.neuralNetwork.preprocessing[0].featureName = '0'
|
||
|
||
# Flexible input shapes
|
||
# from coremltools.models.neural_network import flexible_shape_utils
|
||
# s = [] # shapes
|
||
# s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
|
||
# s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384)) # (height, width)
|
||
# flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
|
||
# r = flexible_shape_utils.NeuralNetworkImageSizeRange() # shape ranges
|
||
# r.add_height_range((192, 640))
|
||
# r.add_width_range((192, 640))
|
||
# flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)
|
||
|
||
# Print
|
||
print(spec.description)
|
||
|
||
# Model from spec
|
||
model = ct.models.MLModel(spec)
|
||
|
||
# 3. Create NMS protobuf
|
||
nms_spec = ct.proto.Model_pb2.Model()
|
||
nms_spec.specificationVersion = 5
|
||
for i in range(2):
|
||
decoder_output = model._spec.description.output[i].SerializeToString()
|
||
nms_spec.description.input.add()
|
||
nms_spec.description.input[i].ParseFromString(decoder_output)
|
||
nms_spec.description.output.add()
|
||
nms_spec.description.output[i].ParseFromString(decoder_output)
|
||
|
||
nms_spec.description.output[0].name = 'confidence'
|
||
nms_spec.description.output[1].name = 'coordinates'
|
||
|
||
output_sizes = [nc, 4]
|
||
for i in range(2):
|
||
ma_type = nms_spec.description.output[i].type.multiArrayType
|
||
ma_type.shapeRange.sizeRanges.add()
|
||
ma_type.shapeRange.sizeRanges[0].lowerBound = 0
|
||
ma_type.shapeRange.sizeRanges[0].upperBound = -1
|
||
ma_type.shapeRange.sizeRanges.add()
|
||
ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
|
||
ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
|
||
del ma_type.shape[:]
|
||
|
||
nms = nms_spec.nonMaximumSuppression
|
||
nms.confidenceInputFeatureName = out0.name # 1x507x80
|
||
nms.coordinatesInputFeatureName = out1.name # 1x507x4
|
||
nms.confidenceOutputFeatureName = 'confidence'
|
||
nms.coordinatesOutputFeatureName = 'coordinates'
|
||
nms.iouThresholdInputFeatureName = 'iouThreshold'
|
||
nms.confidenceThresholdInputFeatureName = 'confidenceThreshold'
|
||
nms.iouThreshold = 0.45
|
||
nms.confidenceThreshold = 0.25
|
||
nms.pickTop.perClass = True
|
||
nms.stringClassLabels.vector.extend(names.values())
|
||
nms_model = ct.models.MLModel(nms_spec)
|
||
|
||
# 4. Pipeline models together
|
||
pipeline = ct.models.pipeline.Pipeline(input_features=[('image', ct.models.datatypes.Array(3, ny, nx)),
|
||
('iouThreshold', ct.models.datatypes.Double()),
|
||
('confidenceThreshold', ct.models.datatypes.Double())],
|
||
output_features=['confidence', 'coordinates'])
|
||
pipeline.add_model(model)
|
||
pipeline.add_model(nms_model)
|
||
|
||
# Correct datatypes
|
||
pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
|
||
pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
|
||
pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())
|
||
|
||
# Update metadata
|
||
pipeline.spec.specificationVersion = 5
|
||
pipeline.spec.description.metadata.versionString = 'https://github.com/ultralytics/yolov5'
|
||
pipeline.spec.description.metadata.shortDescription = 'https://github.com/ultralytics/yolov5'
|
||
pipeline.spec.description.metadata.author = 'glenn.jocher@ultralytics.com'
|
||
pipeline.spec.description.metadata.license = 'https://github.com/ultralytics/yolov5/blob/master/LICENSE'
|
||
pipeline.spec.description.metadata.userDefined.update({
|
||
'classes': ','.join(names.values()),
|
||
'iou_threshold': str(nms.iouThreshold),
|
||
'confidence_threshold': str(nms.confidenceThreshold)})
|
||
|
||
# Save the model
|
||
f = file.with_suffix('.mlmodel') # filename
|
||
model = ct.models.MLModel(pipeline.spec)
|
||
model.input_description['image'] = 'Input image'
|
||
model.input_description['iouThreshold'] = f'(optional) IOU Threshold override (default: {nms.iouThreshold})'
|
||
model.input_description['confidenceThreshold'] = \
|
||
f'(optional) Confidence Threshold override (default: {nms.confidenceThreshold})'
|
||
model.output_description['confidence'] = 'Boxes × Class confidence (see user-defined metadata "classes")'
|
||
model.output_description['coordinates'] = 'Boxes × [x, y, width, height] (relative to image size)'
|
||
model.save(f) # pipelined
|
||
print(f'{prefix} pipeline success ({time.time() - t:.2f}s), saved as {f} ({file_size(f):.1f} MB)')
|
||
|
||
|
||
@smart_inference_mode()
|
||
def run(
|
||
data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path'
|
||
weights=ROOT / 'yolov5s.pt', # weights path
|
||
imgsz=(640, 640), # image (height, width)
|
||
batch_size=1, # batch size
|
||
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||
include=('torchscript', 'onnx'), # include formats
|
||
half=False, # FP16 half-precision export
|
||
inplace=False, # set YOLOv5 Detect() inplace=True
|
||
keras=False, # use Keras
|
||
optimize=False, # TorchScript: optimize for mobile
|
||
int8=False, # CoreML/TF INT8 quantization
|
||
dynamic=False, # ONNX/TF/TensorRT: dynamic axes
|
||
simplify=False, # ONNX: simplify model
|
||
opset=12, # ONNX: opset version
|
||
verbose=False, # TensorRT: verbose log
|
||
workspace=4, # TensorRT: workspace size (GB)
|
||
nms=False, # TF: add NMS to model
|
||
agnostic_nms=False, # TF: add agnostic NMS to model
|
||
topk_per_class=100, # TF.js NMS: topk per class to keep
|
||
topk_all=100, # TF.js NMS: topk for all classes to keep
|
||
iou_thres=0.45, # TF.js NMS: IoU threshold
|
||
conf_thres=0.25, # TF.js NMS: confidence threshold
|
||
):
|
||
t = time.time()
|
||
include = [x.lower() for x in include] # to lowercase
|
||
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
|
||
flags = [x in include for x in fmts]
|
||
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
|
||
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
|
||
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
|
||
|
||
# Load PyTorch model
|
||
device = select_device(device)
|
||
if half:
|
||
assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
|
||
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
|
||
model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
|
||
|
||
# Checks
|
||
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
||
if optimize:
|
||
assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
|
||
|
||
# Input
|
||
gs = int(max(model.stride)) # grid size (max stride)
|
||
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
|
||
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
||
|
||
# Update model
|
||
model.eval()
|
||
for k, m in model.named_modules():
|
||
if isinstance(m, Detect):
|
||
m.inplace = inplace
|
||
m.dynamic = dynamic
|
||
m.export = True
|
||
|
||
for _ in range(2):
|
||
y = model(im) # dry runs
|
||
if half and not coreml:
|
||
im, model = im.half(), model.half() # to FP16
|
||
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
|
||
metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
||
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
|
||
|
||
# Exports
|
||
f = [''] * len(fmts) # exported filenames
|
||
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
||
if jit: # TorchScript
|
||
f[0], _ = export_torchscript(model, im, file, optimize)
|
||
if engine: # TensorRT required before ONNX
|
||
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
|
||
if onnx or xml: # OpenVINO requires ONNX
|
||
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
|
||
if xml: # OpenVINO
|
||
f[3], _ = export_openvino(file, metadata, half)
|
||
if coreml: # CoreML
|
||
f[4], ct_model = export_coreml(model, im, file, int8, half, nms)
|
||
if nms:
|
||
pipeline_coreml(ct_model, im, file, model.names, y)
|
||
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
|
||
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
||
assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
|
||
f[5], s_model = export_saved_model(model.cpu(),
|
||
im,
|
||
file,
|
||
dynamic,
|
||
tf_nms=nms or agnostic_nms or tfjs,
|
||
agnostic_nms=agnostic_nms or tfjs,
|
||
topk_per_class=topk_per_class,
|
||
topk_all=topk_all,
|
||
iou_thres=iou_thres,
|
||
conf_thres=conf_thres,
|
||
keras=keras)
|
||
if pb or tfjs: # pb prerequisite to tfjs
|
||
f[6], _ = export_pb(s_model, file)
|
||
if tflite or edgetpu:
|
||
f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
|
||
if edgetpu:
|
||
f[8], _ = export_edgetpu(file)
|
||
add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
|
||
if tfjs:
|
||
f[9], _ = export_tfjs(file, int8)
|
||
if paddle: # PaddlePaddle
|
||
f[10], _ = export_paddle(model, im, file, metadata)
|
||
|
||
# Finish
|
||
f = [str(x) for x in f if x] # filter out '' and None
|
||
if any(f):
|
||
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
|
||
det &= not seg # segmentation models inherit from SegmentationModel(DetectionModel)
|
||
dir = Path('segment' if seg else 'classify' if cls else '')
|
||
h = '--half' if half else '' # --half FP16 inference arg
|
||
s = '# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference' if cls else \
|
||
'# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference' if seg else ''
|
||
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
||
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
||
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
|
||
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
|
||
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
|
||
f'\nVisualize: https://netron.app')
|
||
return f # return list of exported files/dirs
|
||
|
||
|
||
def parse_opt(known=False):
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
||
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
|
||
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
|
||
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
||
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
||
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
||
parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
|
||
parser.add_argument('--keras', action='store_true', help='TF: use Keras')
|
||
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
||
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
|
||
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
|
||
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
||
parser.add_argument('--opset', type=int, default=17, help='ONNX: opset version')
|
||
parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
|
||
parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
|
||
parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
|
||
parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
|
||
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
|
||
parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
|
||
parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
|
||
parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
|
||
parser.add_argument(
|
||
'--include',
|
||
nargs='+',
|
||
default=['torchscript'],
|
||
help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
|
||
opt = parser.parse_known_args()[0] if known else parser.parse_args()
|
||
print_args(vars(opt))
|
||
return opt
|
||
|
||
|
||
def main(opt):
|
||
for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
|
||
run(**vars(opt))
|
||
|
||
|
||
if __name__ == '__main__':
|
||
opt = parse_opt()
|
||
main(opt)
|