import cv2 import numpy as np # 找图 返回最近似的点 def search_returnPoint(img, template, template_size): img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) template_ = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY) result = cv2.matchTemplate(img_gray, template_, cv2.TM_CCOEFF_NORMED) threshold = 0.7 # res大于70% loc = np.where(result >= threshold) # 使用灰度图像中的坐标对原始RGB图像进行标记 point = () for pt in zip(*loc[::-1]): cv2.rectangle(img, pt, (pt[0] + template_size[1], pt[1] + + template_size[0]), (7, 249, 151), 2) point = pt if point == (): return None, None, None return img, point[0] + template_size[1] / 2, point[1] def run(target_image_path, image_path): scale = 1 img = cv2.imread(target_image_path) # 要找的大图 img = cv2.resize(img, (0, 0), fx=scale, fy=scale) template = cv2.imread(image_path) # 图中的小图 template = cv2.resize(template, (0, 0), fx=scale, fy=scale) template_size = template.shape[:2] img, x_, y_ = search_returnPoint(img, template, template_size) if img is None: return False else: print(f"找到图片位置:{x_, y_}") return True if __name__ == '__main__': run('../target_img/image_6.jpg', '../img/cma.jpg')