提交一些落后的数据

This commit is contained in:
luzhisheng 2025-03-18 23:41:12 +08:00
parent f192f6695b
commit f1fe68c76f
50 changed files with 1742 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

View File

@ -0,0 +1,237 @@
# ClearML Integration
<img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_dark.png#gh-light-mode-only" alt="Clear|ML"><img align="center" src="https://github.com/thepycoder/clearml_screenshots/raw/main/logos_light.png#gh-dark-mode-only" alt="Clear|ML">
## About ClearML
[ClearML](https://cutt.ly/yolov5-tutorial-clearml) is an [open-source](https://github.com/allegroai/clearml) toolbox designed to save you time ⏱️.
🔨 Track every YOLOv5 training run in the <b>experiment manager</b>
🔧 Version and easily access your custom training data with the integrated ClearML <b>Data Versioning Tool</b>
🔦 <b>Remotely train and monitor</b> your YOLOv5 training runs using ClearML Agent
🔬 Get the very best mAP using ClearML <b>Hyperparameter Optimization</b>
🔭 Turn your newly trained <b>YOLOv5 model into an API</b> with just a few commands using ClearML Serving
<br />
And so much more. It's up to you how many of these tools you want to use, you can stick to the experiment manager, or chain them all together into an impressive pipeline!
<br />
<br />
![ClearML scalars dashboard](https://github.com/thepycoder/clearml_screenshots/raw/main/experiment_manager_with_compare.gif)
<br />
<br />
## 🦾 Setting Things Up
To keep track of your experiments and/or data, ClearML needs to communicate to a server. You have 2 options to get one:
Either sign up for free to the [ClearML Hosted Service](https://cutt.ly/yolov5-tutorial-clearml) or you can set up your own server, see [here](https://clear.ml/docs/latest/docs/deploying_clearml/clearml_server). Even the server is open-source, so even if you're dealing with sensitive data, you should be good to go!
1. Install the `clearml` python package:
```bash
pip install clearml
```
1. Connect the ClearML SDK to the server by [creating credentials](https://app.clear.ml/settings/workspace-configuration) (go right top to Settings -> Workspace -> Create new credentials), then execute the command below and follow the instructions:
```bash
clearml-init
```
That's it! You're done 😎
<br />
## 🚀 Training YOLOv5 With ClearML
To enable ClearML experiment tracking, simply install the ClearML pip package.
```bash
pip install clearml>=1.2.0
```
This will enable integration with the YOLOv5 training script. Every training run from now on, will be captured and stored by the ClearML experiment manager.
If you want to change the `project_name` or `task_name`, use the `--project` and `--name` arguments of the `train.py` script, by default the project will be called `YOLOv5` and the task `Training`.
PLEASE NOTE: ClearML uses `/` as a delimiter for subprojects, so be careful when using `/` in your project name!
```bash
python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
```
or with custom project and task name:
```bash
python train.py --project my_project --name my_training --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
```
This will capture:
- Source code + uncommitted changes
- Installed packages
- (Hyper)parameters
- Model files (use `--save-period n` to save a checkpoint every n epochs)
- Console output
- Scalars (mAP_0.5, mAP_0.5:0.95, precision, recall, losses, learning rates, ...)
- General info such as machine details, runtime, creation date etc.
- All produced plots such as label correlogram and confusion matrix
- Images with bounding boxes per epoch
- Mosaic per epoch
- Validation images per epoch
- ...
That's a lot right? 🤯
Now, we can visualize all of this information in the ClearML UI to get an overview of our training progress. Add custom columns to the table view (such as e.g. mAP_0.5) so you can easily sort on the best performing model. Or select multiple experiments and directly compare them!
There even more we can do with all of this information, like hyperparameter optimization and remote execution, so keep reading if you want to see how that works!
<br />
## 🔗 Dataset Version Management
Versioning your data separately from your code is generally a good idea and makes it easy to acquire the latest version too. This repository supports supplying a dataset version ID, and it will make sure to get the data if it's not there yet. Next to that, this workflow also saves the used dataset ID as part of the task parameters, so you will always know for sure which data was used in which experiment!
![ClearML Dataset Interface](https://github.com/thepycoder/clearml_screenshots/raw/main/clearml_data.gif)
### Prepare Your Dataset
The YOLOv5 repository supports a number of different datasets by using yaml files containing their information. By default datasets are downloaded to the `../datasets` folder in relation to the repository root folder. So if you downloaded the `coco128` dataset using the link in the yaml or with the scripts provided by yolov5, you get this folder structure:
```
..
|_ yolov5
|_ datasets
|_ coco128
|_ images
|_ labels
|_ LICENSE
|_ README.txt
```
But this can be any dataset you wish. Feel free to use your own, as long as you keep to this folder structure.
Next, ⚠️**copy the corresponding yaml file to the root of the dataset folder**⚠️. This yaml files contains the information ClearML will need to properly use the dataset. You can make this yourself too, of course, just follow the structure of the example yamls.
Basically we need the following keys: `path`, `train`, `test`, `val`, `nc`, `names`.
```
..
|_ yolov5
|_ datasets
|_ coco128
|_ images
|_ labels
|_ coco128.yaml # <---- HERE!
|_ LICENSE
|_ README.txt
```
### Upload Your Dataset
To get this dataset into ClearML as a versioned dataset, go to the dataset root folder and run the following command:
```bash
cd coco128
clearml-data sync --project YOLOv5 --name coco128 --folder .
```
The command `clearml-data sync` is actually a shorthand command. You could also run these commands one after the other:
```bash
# Optionally add --parent <parent_dataset_id> if you want to base
# this version on another dataset version, so no duplicate files are uploaded!
clearml-data create --name coco128 --project YOLOv5
clearml-data add --files .
clearml-data close
```
### Run Training Using A ClearML Dataset
Now that you have a ClearML dataset, you can very simply use it to train custom YOLOv5 🚀 models!
```bash
python train.py --img 640 --batch 16 --epochs 3 --data clearml://<your_dataset_id> --weights yolov5s.pt --cache
```
<br />
## 👀 Hyperparameter Optimization
Now that we have our experiments and data versioned, it's time to take a look at what we can build on top!
Using the code information, installed packages and environment details, the experiment itself is now **completely reproducible**. In fact, ClearML allows you to clone an experiment and even change its parameters. We can then just rerun it with these new parameters automatically, this is basically what HPO does!
To **run hyperparameter optimization locally**, we've included a pre-made script for you. Just make sure a training task has been run at least once, so it is in the ClearML experiment manager, we will essentially clone it and change its hyperparameters.
You'll need to fill in the ID of this `template task` in the script found at `utils/loggers/clearml/hpo.py` and then just run it :) You can change `task.execute_locally()` to `task.execute()` to put it in a ClearML queue and have a remote agent work on it instead.
```bash
# To use optuna, install it first, otherwise you can change the optimizer to just be RandomSearch
pip install optuna
python utils/loggers/clearml/hpo.py
```
![HPO](https://github.com/thepycoder/clearml_screenshots/raw/main/hpo.png)
## 🤯 Remote Execution (advanced)
Running HPO locally is really handy, but what if we want to run our experiments on a remote machine instead? Maybe you have access to a very powerful GPU machine on-site, or you have some budget to use cloud GPUs.
This is where the ClearML Agent comes into play. Check out what the agent can do here:
- [YouTube video](https://youtu.be/MX3BrXnaULs)
- [Documentation](https://clear.ml/docs/latest/docs/clearml_agent)
In short: every experiment tracked by the experiment manager contains enough information to reproduce it on a different machine (installed packages, uncommitted changes etc.). So a ClearML agent does just that: it listens to a queue for incoming tasks and when it finds one, it recreates the environment and runs it while still reporting scalars, plots etc. to the experiment manager.
You can turn any machine (a cloud VM, a local GPU machine, your own laptop ... ) into a ClearML agent by simply running:
```bash
clearml-agent daemon --queue <queues_to_listen_to> [--docker]
```
### Cloning, Editing And Enqueuing
With our agent running, we can give it some work. Remember from the HPO section that we can clone a task and edit the hyperparameters? We can do that from the interface too!
🪄 Clone the experiment by right-clicking it
🎯 Edit the hyperparameters to what you wish them to be
⏳ Enqueue the task to any of the queues by right-clicking it
![Enqueue a task from the UI](https://github.com/thepycoder/clearml_screenshots/raw/main/enqueue.gif)
### Executing A Task Remotely
Now you can clone a task like we explained above, or simply mark your current script by adding `task.execute_remotely()` and on execution it will be put into a queue, for the agent to start working on!
To run the YOLOv5 training script remotely, all you have to do is add this line to the training.py script after the clearml logger has been instantiated:
```python
# ...
# Loggers
data_dict = None
if RANK in {-1, 0}:
loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance
if loggers.clearml:
loggers.clearml.task.execute_remotely(queue="my_queue") # <------ ADD THIS LINE
# Data_dict is either None is user did not choose for ClearML dataset or is filled in by ClearML
data_dict = loggers.clearml.data_dict
# ...
```
When running the training script after this change, python will run the script up until that line, after which it will package the code and send it to the queue instead!
### Autoscaling workers
ClearML comes with autoscalers too! This tool will automatically spin up new remote machines in the cloud of your choice (AWS, GCP, Azure) and turn them into ClearML agents for you whenever there are experiments detected in the queue. Once the tasks are processed, the autoscaler will automatically shut down the remote machines, and you stop paying!
Check out the autoscalers getting started video below.
[![Watch the video](https://img.youtube.com/vi/j4XVMAaUt3E/0.jpg)](https://youtu.be/j4XVMAaUt3E)

View File

@ -0,0 +1,164 @@
"""Main Logger class for ClearML experiment tracking."""
import glob
import re
from pathlib import Path
import numpy as np
import yaml
from utils.plots import Annotator, colors
try:
import clearml
from clearml import Dataset, Task
assert hasattr(clearml, '__version__') # verify package import not local dir
except (ImportError, AssertionError):
clearml = None
def construct_dataset(clearml_info_string):
"""Load in a clearml dataset and fill the internal data_dict with its contents.
"""
dataset_id = clearml_info_string.replace('clearml://', '')
dataset = Dataset.get(dataset_id=dataset_id)
dataset_root_path = Path(dataset.get_local_copy())
# We'll search for the yaml file definition in the dataset
yaml_filenames = list(glob.glob(str(dataset_root_path / '*.yaml')) + glob.glob(str(dataset_root_path / '*.yml')))
if len(yaml_filenames) > 1:
raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains '
'the dataset definition this way.')
elif len(yaml_filenames) == 0:
raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file '
'inside the dataset root path.')
with open(yaml_filenames[0]) as f:
dataset_definition = yaml.safe_load(f)
assert set(dataset_definition.keys()).issuperset(
{'train', 'test', 'val', 'nc', 'names'}
), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
data_dict = dict()
data_dict['train'] = str(
(dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None
data_dict['test'] = str(
(dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None
data_dict['val'] = str(
(dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None
data_dict['nc'] = dataset_definition['nc']
data_dict['names'] = dataset_definition['names']
return data_dict
class ClearmlLogger:
"""Log training runs, datasets, models, and predictions to ClearML.
This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default,
this information includes hyperparameters, system configuration and metrics, model metrics, code information and
basic data metrics and analyses.
By providing additional command line arguments to train.py, datasets,
models and predictions can also be logged.
"""
def __init__(self, opt, hyp):
"""
- Initialize ClearML Task, this object will capture the experiment
- Upload dataset version to ClearML Data if opt.upload_dataset is True
arguments:
opt (namespace) -- Commandline arguments for this run
hyp (dict) -- Hyperparameters for this run
"""
self.current_epoch = 0
# Keep tracked of amount of logged images to enforce a limit
self.current_epoch_logged_images = set()
# Maximum number of images to log to clearML per epoch
self.max_imgs_to_log_per_epoch = 16
# Get the interval of epochs when bounding box images should be logged
self.bbox_interval = opt.bbox_interval
self.clearml = clearml
self.task = None
self.data_dict = None
if self.clearml:
self.task = Task.init(
project_name=opt.project if opt.project != 'runs/train' else 'YOLOv5',
task_name=opt.name if opt.name != 'exp' else 'Training',
tags=['YOLOv5'],
output_uri=True,
reuse_last_task_id=opt.exist_ok,
auto_connect_frameworks={'pytorch': False}
# We disconnect pytorch auto-detection, because we added manual model save points in the code
)
# ClearML's hooks will already grab all general parameters
# Only the hyperparameters coming from the yaml config file
# will have to be added manually!
self.task.connect(hyp, name='Hyperparameters')
self.task.connect(opt, name='Args')
# Make sure the code is easily remotely runnable by setting the docker image to use by the remote agent
self.task.set_base_docker('ultralytics/yolov5:latest',
docker_arguments='--ipc=host -e="CLEARML_AGENT_SKIP_PYTHON_ENV_INSTALL=1"',
docker_setup_bash_script='pip install clearml')
# Get ClearML Dataset Version if requested
if opt.data.startswith('clearml://'):
# data_dict should have the following keys:
# names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
self.data_dict = construct_dataset(opt.data)
# Set data to data_dict because wandb will crash without this information and opt is the best way
# to give it to them
opt.data = self.data_dict
def log_debug_samples(self, files, title='Debug Samples'):
"""
Log files (images) as debug samples in the ClearML task.
arguments:
files (List(PosixPath)) a list of file paths in PosixPath format
title (str) A title that groups together images with the same values
"""
for f in files:
if f.exists():
it = re.search(r'_batch(\d+)', f.name)
iteration = int(it.groups()[0]) if it else 0
self.task.get_logger().report_image(title=title,
series=f.name.replace(it.group(), ''),
local_path=str(f),
iteration=iteration)
def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25):
"""
Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
arguments:
image_path (PosixPath) the path the original image file
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
class_names (dict): dict containing mapping of class int to class name
image (Tensor): A torch tensor containing the actual image data
"""
if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0:
# Log every bbox_interval times and deduplicate for any intermittend extra eval runs
if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images:
im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2))
annotator = Annotator(im=im, pil=True)
for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])):
color = colors(i)
class_name = class_names[int(class_nr)]
confidence_percentage = round(float(conf) * 100, 2)
label = f'{class_name}: {confidence_percentage}%'
if conf > conf_threshold:
annotator.rectangle(box.cpu().numpy(), outline=color)
annotator.box_label(box.cpu().numpy(), label=label, color=color)
annotated_image = annotator.result()
self.task.get_logger().report_image(title='Bounding Boxes',
series=image_path.name,
iteration=self.current_epoch,
image=annotated_image)
self.current_epoch_logged_images.add(image_path)

View File

@ -0,0 +1,84 @@
from clearml import Task
# Connecting ClearML with the current process,
# from here on everything is logged automatically
from clearml.automation import HyperParameterOptimizer, UniformParameterRange
from clearml.automation.optuna import OptimizerOptuna
task = Task.init(project_name='Hyper-Parameter Optimization',
task_name='YOLOv5',
task_type=Task.TaskTypes.optimizer,
reuse_last_task_id=False)
# Example use case:
optimizer = HyperParameterOptimizer(
# This is the experiment we want to optimize
base_task_id='<your_template_task_id>',
# here we define the hyper-parameters to optimize
# Notice: The parameter name should exactly match what you see in the UI: <section_name>/<parameter>
# For Example, here we see in the base experiment a section Named: "General"
# under it a parameter named "batch_size", this becomes "General/batch_size"
# If you have `argparse` for example, then arguments will appear under the "Args" section,
# and you should instead pass "Args/batch_size"
hyper_parameters=[
UniformParameterRange('Hyperparameters/lr0', min_value=1e-5, max_value=1e-1),
UniformParameterRange('Hyperparameters/lrf', min_value=0.01, max_value=1.0),
UniformParameterRange('Hyperparameters/momentum', min_value=0.6, max_value=0.98),
UniformParameterRange('Hyperparameters/weight_decay', min_value=0.0, max_value=0.001),
UniformParameterRange('Hyperparameters/warmup_epochs', min_value=0.0, max_value=5.0),
UniformParameterRange('Hyperparameters/warmup_momentum', min_value=0.0, max_value=0.95),
UniformParameterRange('Hyperparameters/warmup_bias_lr', min_value=0.0, max_value=0.2),
UniformParameterRange('Hyperparameters/box', min_value=0.02, max_value=0.2),
UniformParameterRange('Hyperparameters/cls', min_value=0.2, max_value=4.0),
UniformParameterRange('Hyperparameters/cls_pw', min_value=0.5, max_value=2.0),
UniformParameterRange('Hyperparameters/obj', min_value=0.2, max_value=4.0),
UniformParameterRange('Hyperparameters/obj_pw', min_value=0.5, max_value=2.0),
UniformParameterRange('Hyperparameters/iou_t', min_value=0.1, max_value=0.7),
UniformParameterRange('Hyperparameters/anchor_t', min_value=2.0, max_value=8.0),
UniformParameterRange('Hyperparameters/fl_gamma', min_value=0.0, max_value=4.0),
UniformParameterRange('Hyperparameters/hsv_h', min_value=0.0, max_value=0.1),
UniformParameterRange('Hyperparameters/hsv_s', min_value=0.0, max_value=0.9),
UniformParameterRange('Hyperparameters/hsv_v', min_value=0.0, max_value=0.9),
UniformParameterRange('Hyperparameters/degrees', min_value=0.0, max_value=45.0),
UniformParameterRange('Hyperparameters/translate', min_value=0.0, max_value=0.9),
UniformParameterRange('Hyperparameters/scale', min_value=0.0, max_value=0.9),
UniformParameterRange('Hyperparameters/shear', min_value=0.0, max_value=10.0),
UniformParameterRange('Hyperparameters/perspective', min_value=0.0, max_value=0.001),
UniformParameterRange('Hyperparameters/flipud', min_value=0.0, max_value=1.0),
UniformParameterRange('Hyperparameters/fliplr', min_value=0.0, max_value=1.0),
UniformParameterRange('Hyperparameters/mosaic', min_value=0.0, max_value=1.0),
UniformParameterRange('Hyperparameters/mixup', min_value=0.0, max_value=1.0),
UniformParameterRange('Hyperparameters/copy_paste', min_value=0.0, max_value=1.0)],
# this is the objective metric we want to maximize/minimize
objective_metric_title='metrics',
objective_metric_series='mAP_0.5',
# now we decide if we want to maximize it or minimize it (accuracy we maximize)
objective_metric_sign='max',
# let us limit the number of concurrent experiments,
# this in turn will make sure we do dont bombard the scheduler with experiments.
# if we have an auto-scaler connected, this, by proxy, will limit the number of machine
max_number_of_concurrent_tasks=1,
# this is the optimizer class (actually doing the optimization)
# Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
optimizer_class=OptimizerOptuna,
# If specified only the top K performing Tasks will be kept, the others will be automatically archived
save_top_k_tasks_only=5, # 5,
compute_time_limit=None,
total_max_jobs=20,
min_iteration_per_job=None,
max_iteration_per_job=None,
)
# report every 10 seconds, this is way too often, but we are testing here
optimizer.set_report_period(10 / 60)
# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent
# an_optimizer.start_locally(job_complete_callback=job_complete_callback)
# set the time limit for the optimization process (2 hours)
optimizer.set_time_limit(in_minutes=120.0)
# Start the optimization process in the local environment
optimizer.start_locally()
# wait until process is done (notice we are controlling the optimization process in the background)
optimizer.wait()
# make sure background optimization stopped
optimizer.stop()
print('We are done, good bye')

View File

@ -0,0 +1,258 @@
<img src="https://cdn.comet.ml/img/notebook_logo.png">
# YOLOv5 with Comet
This guide will cover how to use YOLOv5 with [Comet](https://bit.ly/yolov5-readme-comet2)
# About Comet
Comet builds tools that help data scientists, engineers, and team leaders accelerate and optimize machine learning and deep learning models.
Track and visualize model metrics in real time, save your hyperparameters, datasets, and model checkpoints, and visualize your model predictions with [Comet Custom Panels](https://www.comet.com/docs/v2/guides/comet-dashboard/code-panels/about-panels/?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)!
Comet makes sure you never lose track of your work and makes it easy to share results and collaborate across teams of all sizes!
# Getting Started
## Install Comet
```shell
pip install comet_ml
```
## Configure Comet Credentials
There are two ways to configure Comet with YOLOv5.
You can either set your credentials through environment variables
**Environment Variables**
```shell
export COMET_API_KEY=<Your Comet API Key>
export COMET_PROJECT_NAME=<Your Comet Project Name> # This will default to 'yolov5'
```
Or create a `.comet.config` file in your working directory and set your credentials there.
**Comet Configuration File**
```
[comet]
api_key=<Your Comet API Key>
project_name=<Your Comet Project Name> # This will default to 'yolov5'
```
## Run the Training Script
```shell
# Train YOLOv5s on COCO128 for 5 epochs
python train.py --img 640 --batch 16 --epochs 5 --data coco128.yaml --weights yolov5s.pt
```
That's it! Comet will automatically log your hyperparameters, command line arguments, training and validation metrics. You can visualize and analyze your runs in the Comet UI
<img width="1920" alt="yolo-ui" src="https://user-images.githubusercontent.com/26833433/202851203-164e94e1-2238-46dd-91f8-de020e9d6b41.png">
# Try out an Example!
Check out an example of a [completed run here](https://www.comet.com/examples/comet-example-yolov5/a0e29e0e9b984e4a822db2a62d0cb357?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step&utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
Or better yet, try it out yourself in this Colab Notebook
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1RG0WOQyxlDlo5Km8GogJpIEJlg_5lyYO?usp=sharing)
# Log automatically
By default, Comet will log the following items
## Metrics
- Box Loss, Object Loss, Classification Loss for the training and validation data
- mAP_0.5, mAP_0.5:0.95 metrics for the validation data.
- Precision and Recall for the validation data
## Parameters
- Model Hyperparameters
- All parameters passed through the command line options
## Visualizations
- Confusion Matrix of the model predictions on the validation data
- Plots for the PR and F1 curves across all classes
- Correlogram of the Class Labels
# Configure Comet Logging
Comet can be configured to log additional data either through command line flags passed to the training script
or through environment variables.
```shell
export COMET_MODE=online # Set whether to run Comet in 'online' or 'offline' mode. Defaults to online
export COMET_MODEL_NAME=<your model name> #Set the name for the saved model. Defaults to yolov5
export COMET_LOG_CONFUSION_MATRIX=false # Set to disable logging a Comet Confusion Matrix. Defaults to true
export COMET_MAX_IMAGE_UPLOADS=<number of allowed images to upload to Comet> # Controls how many total image predictions to log to Comet. Defaults to 100.
export COMET_LOG_PER_CLASS_METRICS=true # Set to log evaluation metrics for each detected class at the end of training. Defaults to false
export COMET_DEFAULT_CHECKPOINT_FILENAME=<your checkpoint filename> # Set this if you would like to resume training from a different checkpoint. Defaults to 'last.pt'
export COMET_LOG_BATCH_LEVEL_METRICS=true # Set this if you would like to log training metrics at the batch level. Defaults to false.
export COMET_LOG_PREDICTIONS=true # Set this to false to disable logging model predictions
```
## Logging Checkpoints with Comet
Logging Models to Comet is disabled by default. To enable it, pass the `save-period` argument to the training script. This will save the
logged checkpoints to Comet based on the interval value provided by `save-period`
```shell
python train.py \
--img 640 \
--batch 16 \
--epochs 5 \
--data coco128.yaml \
--weights yolov5s.pt \
--save-period 1
```
## Logging Model Predictions
By default, model predictions (images, ground truth labels and bounding boxes) will be logged to Comet.
You can control the frequency of logged predictions and the associated images by passing the `bbox_interval` command line argument. Predictions can be visualized using Comet's Object Detection Custom Panel. This frequency corresponds to every Nth batch of data per epoch. In the example below, we are logging every 2nd batch of data for each epoch.
**Note:** The YOLOv5 validation dataloader will default to a batch size of 32, so you will have to set the logging frequency accordingly.
Here is an [example project using the Panel](https://www.comet.com/examples/comet-example-yolov5?shareable=YcwMiJaZSXfcEXpGOHDD12vA1&utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
```shell
python train.py \
--img 640 \
--batch 16 \
--epochs 5 \
--data coco128.yaml \
--weights yolov5s.pt \
--bbox_interval 2
```
### Controlling the number of Prediction Images logged to Comet
When logging predictions from YOLOv5, Comet will log the images associated with each set of predictions. By default a maximum of 100 validation images are logged. You can increase or decrease this number using the `COMET_MAX_IMAGE_UPLOADS` environment variable.
```shell
env COMET_MAX_IMAGE_UPLOADS=200 python train.py \
--img 640 \
--batch 16 \
--epochs 5 \
--data coco128.yaml \
--weights yolov5s.pt \
--bbox_interval 1
```
### Logging Class Level Metrics
Use the `COMET_LOG_PER_CLASS_METRICS` environment variable to log mAP, precision, recall, f1 for each class.
```shell
env COMET_LOG_PER_CLASS_METRICS=true python train.py \
--img 640 \
--batch 16 \
--epochs 5 \
--data coco128.yaml \
--weights yolov5s.pt
```
## Uploading a Dataset to Comet Artifacts
If you would like to store your data using [Comet Artifacts](https://www.comet.com/docs/v2/guides/data-management/using-artifacts/#learn-more?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github), you can do so using the `upload_dataset` flag.
The dataset be organized in the way described in the [YOLOv5 documentation](https://docs.ultralytics.com/yolov5/tutorials/train_custom_data/). The dataset config `yaml` file must follow the same format as that of the `coco128.yaml` file.
```shell
python train.py \
--img 640 \
--batch 16 \
--epochs 5 \
--data coco128.yaml \
--weights yolov5s.pt \
--upload_dataset
```
You can find the uploaded dataset in the Artifacts tab in your Comet Workspace
<img width="1073" alt="artifact-1" src="https://user-images.githubusercontent.com/7529846/186929193-162718bf-ec7b-4eb9-8c3b-86b3763ef8ea.png">
You can preview the data directly in the Comet UI.
<img width="1082" alt="artifact-2" src="https://user-images.githubusercontent.com/7529846/186929215-432c36a9-c109-4eb0-944b-84c2786590d6.png">
Artifacts are versioned and also support adding metadata about the dataset. Comet will automatically log the metadata from your dataset `yaml` file
<img width="963" alt="artifact-3" src="https://user-images.githubusercontent.com/7529846/186929256-9d44d6eb-1a19-42de-889a-bcbca3018f2e.png">
### Using a saved Artifact
If you would like to use a dataset from Comet Artifacts, set the `path` variable in your dataset `yaml` file to point to the following Artifact resource URL.
```
# contents of artifact.yaml file
path: "comet://<workspace name>/<artifact name>:<artifact version or alias>"
```
Then pass this file to your training script in the following way
```shell
python train.py \
--img 640 \
--batch 16 \
--epochs 5 \
--data artifact.yaml \
--weights yolov5s.pt
```
Artifacts also allow you to track the lineage of data as it flows through your Experimentation workflow. Here you can see a graph that shows you all the experiments that have used your uploaded dataset.
<img width="1391" alt="artifact-4" src="https://user-images.githubusercontent.com/7529846/186929264-4c4014fa-fe51-4f3c-a5c5-f6d24649b1b4.png">
## Resuming a Training Run
If your training run is interrupted for any reason, e.g. disrupted internet connection, you can resume the run using the `resume` flag and the Comet Run Path.
The Run Path has the following format `comet://<your workspace name>/<your project name>/<experiment id>`.
This will restore the run to its state before the interruption, which includes restoring the model from a checkpoint, restoring all hyperparameters and training arguments and downloading Comet dataset Artifacts if they were used in the original run. The resumed run will continue logging to the existing Experiment in the Comet UI
```shell
python train.py \
--resume "comet://<your run path>"
```
## Hyperparameter Search with the Comet Optimizer
YOLOv5 is also integrated with Comet's Optimizer, making is simple to visualize hyperparameter sweeps in the Comet UI.
### Configuring an Optimizer Sweep
To configure the Comet Optimizer, you will have to create a JSON file with the information about the sweep. An example file has been provided in `utils/loggers/comet/optimizer_config.json`
```shell
python utils/loggers/comet/hpo.py \
--comet_optimizer_config "utils/loggers/comet/optimizer_config.json"
```
The `hpo.py` script accepts the same arguments as `train.py`. If you wish to pass additional arguments to your sweep simply add them after
the script.
```shell
python utils/loggers/comet/hpo.py \
--comet_optimizer_config "utils/loggers/comet/optimizer_config.json" \
--save-period 1 \
--bbox_interval 1
```
### Running a Sweep in Parallel
```shell
comet optimizer -j <set number of workers> utils/loggers/comet/hpo.py \
utils/loggers/comet/optimizer_config.json"
```
### Visualizing Results
Comet provides a number of ways to visualize the results of your sweep. Take a look at a [project with a completed sweep here](https://www.comet.com/examples/comet-example-yolov5/view/PrlArHGuuhDTKC1UuBmTtOSXD/panels?utm_source=yolov5&utm_medium=partner&utm_campaign=partner_yolov5_2022&utm_content=github)
<img width="1626" alt="hyperparameter-yolo" src="https://user-images.githubusercontent.com/7529846/186914869-7dc1de14-583f-4323-967b-c9a66a29e495.png">

View File

@ -0,0 +1,508 @@
import glob
import json
import logging
import os
import sys
from pathlib import Path
logger = logging.getLogger(__name__)
FILE = Path(__file__).resolve()
ROOT = FILE.parents[3] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
try:
import comet_ml
# Project Configuration
config = comet_ml.config.get_config()
COMET_PROJECT_NAME = config.get_string(os.getenv('COMET_PROJECT_NAME'), 'comet.project_name', default='yolov5')
except (ModuleNotFoundError, ImportError):
comet_ml = None
COMET_PROJECT_NAME = None
import PIL
import torch
import torchvision.transforms as T
import yaml
from utils.dataloaders import img2label_paths
from utils.general import check_dataset, scale_boxes, xywh2xyxy
from utils.metrics import box_iou
COMET_PREFIX = 'comet://'
COMET_MODE = os.getenv('COMET_MODE', 'online')
# Model Saving Settings
COMET_MODEL_NAME = os.getenv('COMET_MODEL_NAME', 'yolov5')
# Dataset Artifact Settings
COMET_UPLOAD_DATASET = os.getenv('COMET_UPLOAD_DATASET', 'false').lower() == 'true'
# Evaluation Settings
COMET_LOG_CONFUSION_MATRIX = os.getenv('COMET_LOG_CONFUSION_MATRIX', 'true').lower() == 'true'
COMET_LOG_PREDICTIONS = os.getenv('COMET_LOG_PREDICTIONS', 'true').lower() == 'true'
COMET_MAX_IMAGE_UPLOADS = int(os.getenv('COMET_MAX_IMAGE_UPLOADS', 100))
# Confusion Matrix Settings
CONF_THRES = float(os.getenv('CONF_THRES', 0.001))
IOU_THRES = float(os.getenv('IOU_THRES', 0.6))
# Batch Logging Settings
COMET_LOG_BATCH_METRICS = os.getenv('COMET_LOG_BATCH_METRICS', 'false').lower() == 'true'
COMET_BATCH_LOGGING_INTERVAL = os.getenv('COMET_BATCH_LOGGING_INTERVAL', 1)
COMET_PREDICTION_LOGGING_INTERVAL = os.getenv('COMET_PREDICTION_LOGGING_INTERVAL', 1)
COMET_LOG_PER_CLASS_METRICS = os.getenv('COMET_LOG_PER_CLASS_METRICS', 'false').lower() == 'true'
RANK = int(os.getenv('RANK', -1))
to_pil = T.ToPILImage()
class CometLogger:
"""Log metrics, parameters, source code, models and much more
with Comet
"""
def __init__(self, opt, hyp, run_id=None, job_type='Training', **experiment_kwargs) -> None:
self.job_type = job_type
self.opt = opt
self.hyp = hyp
# Comet Flags
self.comet_mode = COMET_MODE
self.save_model = opt.save_period > -1
self.model_name = COMET_MODEL_NAME
# Batch Logging Settings
self.log_batch_metrics = COMET_LOG_BATCH_METRICS
self.comet_log_batch_interval = COMET_BATCH_LOGGING_INTERVAL
# Dataset Artifact Settings
self.upload_dataset = self.opt.upload_dataset if self.opt.upload_dataset else COMET_UPLOAD_DATASET
self.resume = self.opt.resume
# Default parameters to pass to Experiment objects
self.default_experiment_kwargs = {
'log_code': False,
'log_env_gpu': True,
'log_env_cpu': True,
'project_name': COMET_PROJECT_NAME,}
self.default_experiment_kwargs.update(experiment_kwargs)
self.experiment = self._get_experiment(self.comet_mode, run_id)
self.data_dict = self.check_dataset(self.opt.data)
self.class_names = self.data_dict['names']
self.num_classes = self.data_dict['nc']
self.logged_images_count = 0
self.max_images = COMET_MAX_IMAGE_UPLOADS
if run_id is None:
self.experiment.log_other('Created from', 'YOLOv5')
if not isinstance(self.experiment, comet_ml.OfflineExperiment):
workspace, project_name, experiment_id = self.experiment.url.split('/')[-3:]
self.experiment.log_other(
'Run Path',
f'{workspace}/{project_name}/{experiment_id}',
)
self.log_parameters(vars(opt))
self.log_parameters(self.opt.hyp)
self.log_asset_data(
self.opt.hyp,
name='hyperparameters.json',
metadata={'type': 'hyp-config-file'},
)
self.log_asset(
f'{self.opt.save_dir}/opt.yaml',
metadata={'type': 'opt-config-file'},
)
self.comet_log_confusion_matrix = COMET_LOG_CONFUSION_MATRIX
if hasattr(self.opt, 'conf_thres'):
self.conf_thres = self.opt.conf_thres
else:
self.conf_thres = CONF_THRES
if hasattr(self.opt, 'iou_thres'):
self.iou_thres = self.opt.iou_thres
else:
self.iou_thres = IOU_THRES
self.log_parameters({'val_iou_threshold': self.iou_thres, 'val_conf_threshold': self.conf_thres})
self.comet_log_predictions = COMET_LOG_PREDICTIONS
if self.opt.bbox_interval == -1:
self.comet_log_prediction_interval = 1 if self.opt.epochs < 10 else self.opt.epochs // 10
else:
self.comet_log_prediction_interval = self.opt.bbox_interval
if self.comet_log_predictions:
self.metadata_dict = {}
self.logged_image_names = []
self.comet_log_per_class_metrics = COMET_LOG_PER_CLASS_METRICS
self.experiment.log_others({
'comet_mode': COMET_MODE,
'comet_max_image_uploads': COMET_MAX_IMAGE_UPLOADS,
'comet_log_per_class_metrics': COMET_LOG_PER_CLASS_METRICS,
'comet_log_batch_metrics': COMET_LOG_BATCH_METRICS,
'comet_log_confusion_matrix': COMET_LOG_CONFUSION_MATRIX,
'comet_model_name': COMET_MODEL_NAME,})
# Check if running the Experiment with the Comet Optimizer
if hasattr(self.opt, 'comet_optimizer_id'):
self.experiment.log_other('optimizer_id', self.opt.comet_optimizer_id)
self.experiment.log_other('optimizer_objective', self.opt.comet_optimizer_objective)
self.experiment.log_other('optimizer_metric', self.opt.comet_optimizer_metric)
self.experiment.log_other('optimizer_parameters', json.dumps(self.hyp))
def _get_experiment(self, mode, experiment_id=None):
if mode == 'offline':
if experiment_id is not None:
return comet_ml.ExistingOfflineExperiment(
previous_experiment=experiment_id,
**self.default_experiment_kwargs,
)
return comet_ml.OfflineExperiment(**self.default_experiment_kwargs,)
else:
try:
if experiment_id is not None:
return comet_ml.ExistingExperiment(
previous_experiment=experiment_id,
**self.default_experiment_kwargs,
)
return comet_ml.Experiment(**self.default_experiment_kwargs)
except ValueError:
logger.warning('COMET WARNING: '
'Comet credentials have not been set. '
'Comet will default to offline logging. '
'Please set your credentials to enable online logging.')
return self._get_experiment('offline', experiment_id)
return
def log_metrics(self, log_dict, **kwargs):
self.experiment.log_metrics(log_dict, **kwargs)
def log_parameters(self, log_dict, **kwargs):
self.experiment.log_parameters(log_dict, **kwargs)
def log_asset(self, asset_path, **kwargs):
self.experiment.log_asset(asset_path, **kwargs)
def log_asset_data(self, asset, **kwargs):
self.experiment.log_asset_data(asset, **kwargs)
def log_image(self, img, **kwargs):
self.experiment.log_image(img, **kwargs)
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
if not self.save_model:
return
model_metadata = {
'fitness_score': fitness_score[-1],
'epochs_trained': epoch + 1,
'save_period': opt.save_period,
'total_epochs': opt.epochs,}
model_files = glob.glob(f'{path}/*.pt')
for model_path in model_files:
name = Path(model_path).name
self.experiment.log_model(
self.model_name,
file_or_folder=model_path,
file_name=name,
metadata=model_metadata,
overwrite=True,
)
def check_dataset(self, data_file):
with open(data_file) as f:
data_config = yaml.safe_load(f)
if data_config['path'].startswith(COMET_PREFIX):
path = data_config['path'].replace(COMET_PREFIX, '')
data_dict = self.download_dataset_artifact(path)
return data_dict
self.log_asset(self.opt.data, metadata={'type': 'data-config-file'})
return check_dataset(data_file)
def log_predictions(self, image, labelsn, path, shape, predn):
if self.logged_images_count >= self.max_images:
return
detections = predn[predn[:, 4] > self.conf_thres]
iou = box_iou(labelsn[:, 1:], detections[:, :4])
mask, _ = torch.where(iou > self.iou_thres)
if len(mask) == 0:
return
filtered_detections = detections[mask]
filtered_labels = labelsn[mask]
image_id = path.split('/')[-1].split('.')[0]
image_name = f'{image_id}_curr_epoch_{self.experiment.curr_epoch}'
if image_name not in self.logged_image_names:
native_scale_image = PIL.Image.open(path)
self.log_image(native_scale_image, name=image_name)
self.logged_image_names.append(image_name)
metadata = []
for cls, *xyxy in filtered_labels.tolist():
metadata.append({
'label': f'{self.class_names[int(cls)]}-gt',
'score': 100,
'box': {
'x': xyxy[0],
'y': xyxy[1],
'x2': xyxy[2],
'y2': xyxy[3]},})
for *xyxy, conf, cls in filtered_detections.tolist():
metadata.append({
'label': f'{self.class_names[int(cls)]}',
'score': conf * 100,
'box': {
'x': xyxy[0],
'y': xyxy[1],
'x2': xyxy[2],
'y2': xyxy[3]},})
self.metadata_dict[image_name] = metadata
self.logged_images_count += 1
return
def preprocess_prediction(self, image, labels, shape, pred):
nl, _ = labels.shape[0], pred.shape[0]
# Predictions
if self.opt.single_cls:
pred[:, 5] = 0
predn = pred.clone()
scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])
labelsn = None
if nl:
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
scale_boxes(image.shape[1:], tbox, shape[0], shape[1]) # native-space labels
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1]) # native-space pred
return predn, labelsn
def add_assets_to_artifact(self, artifact, path, asset_path, split):
img_paths = sorted(glob.glob(f'{asset_path}/*'))
label_paths = img2label_paths(img_paths)
for image_file, label_file in zip(img_paths, label_paths):
image_logical_path, label_logical_path = map(lambda x: os.path.relpath(x, path), [image_file, label_file])
try:
artifact.add(image_file, logical_path=image_logical_path, metadata={'split': split})
artifact.add(label_file, logical_path=label_logical_path, metadata={'split': split})
except ValueError as e:
logger.error('COMET ERROR: Error adding file to Artifact. Skipping file.')
logger.error(f'COMET ERROR: {e}')
continue
return artifact
def upload_dataset_artifact(self):
dataset_name = self.data_dict.get('dataset_name', 'yolov5-dataset')
path = str((ROOT / Path(self.data_dict['path'])).resolve())
metadata = self.data_dict.copy()
for key in ['train', 'val', 'test']:
split_path = metadata.get(key)
if split_path is not None:
metadata[key] = split_path.replace(path, '')
artifact = comet_ml.Artifact(name=dataset_name, artifact_type='dataset', metadata=metadata)
for key in metadata.keys():
if key in ['train', 'val', 'test']:
if isinstance(self.upload_dataset, str) and (key != self.upload_dataset):
continue
asset_path = self.data_dict.get(key)
if asset_path is not None:
artifact = self.add_assets_to_artifact(artifact, path, asset_path, key)
self.experiment.log_artifact(artifact)
return
def download_dataset_artifact(self, artifact_path):
logged_artifact = self.experiment.get_artifact(artifact_path)
artifact_save_dir = str(Path(self.opt.save_dir) / logged_artifact.name)
logged_artifact.download(artifact_save_dir)
metadata = logged_artifact.metadata
data_dict = metadata.copy()
data_dict['path'] = artifact_save_dir
metadata_names = metadata.get('names')
if type(metadata_names) == dict:
data_dict['names'] = {int(k): v for k, v in metadata.get('names').items()}
elif type(metadata_names) == list:
data_dict['names'] = {int(k): v for k, v in zip(range(len(metadata_names)), metadata_names)}
else:
raise "Invalid 'names' field in dataset yaml file. Please use a list or dictionary"
data_dict = self.update_data_paths(data_dict)
return data_dict
def update_data_paths(self, data_dict):
path = data_dict.get('path', '')
for split in ['train', 'val', 'test']:
if data_dict.get(split):
split_path = data_dict.get(split)
data_dict[split] = (f'{path}/{split_path}' if isinstance(split, str) else [
f'{path}/{x}' for x in split_path])
return data_dict
def on_pretrain_routine_end(self, paths):
if self.opt.resume:
return
for path in paths:
self.log_asset(str(path))
if self.upload_dataset:
if not self.resume:
self.upload_dataset_artifact()
return
def on_train_start(self):
self.log_parameters(self.hyp)
def on_train_epoch_start(self):
return
def on_train_epoch_end(self, epoch):
self.experiment.curr_epoch = epoch
return
def on_train_batch_start(self):
return
def on_train_batch_end(self, log_dict, step):
self.experiment.curr_step = step
if self.log_batch_metrics and (step % self.comet_log_batch_interval == 0):
self.log_metrics(log_dict, step=step)
return
def on_train_end(self, files, save_dir, last, best, epoch, results):
if self.comet_log_predictions:
curr_epoch = self.experiment.curr_epoch
self.experiment.log_asset_data(self.metadata_dict, 'image-metadata.json', epoch=curr_epoch)
for f in files:
self.log_asset(f, metadata={'epoch': epoch})
self.log_asset(f'{save_dir}/results.csv', metadata={'epoch': epoch})
if not self.opt.evolve:
model_path = str(best if best.exists() else last)
name = Path(model_path).name
if self.save_model:
self.experiment.log_model(
self.model_name,
file_or_folder=model_path,
file_name=name,
overwrite=True,
)
# Check if running Experiment with Comet Optimizer
if hasattr(self.opt, 'comet_optimizer_id'):
metric = results.get(self.opt.comet_optimizer_metric)
self.experiment.log_other('optimizer_metric_value', metric)
self.finish_run()
def on_val_start(self):
return
def on_val_batch_start(self):
return
def on_val_batch_end(self, batch_i, images, targets, paths, shapes, outputs):
if not (self.comet_log_predictions and ((batch_i + 1) % self.comet_log_prediction_interval == 0)):
return
for si, pred in enumerate(outputs):
if len(pred) == 0:
continue
image = images[si]
labels = targets[targets[:, 0] == si, 1:]
shape = shapes[si]
path = paths[si]
predn, labelsn = self.preprocess_prediction(image, labels, shape, pred)
if labelsn is not None:
self.log_predictions(image, labelsn, path, shape, predn)
return
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
if self.comet_log_per_class_metrics:
if self.num_classes > 1:
for i, c in enumerate(ap_class):
class_name = self.class_names[c]
self.experiment.log_metrics(
{
'mAP@.5': ap50[i],
'mAP@.5:.95': ap[i],
'precision': p[i],
'recall': r[i],
'f1': f1[i],
'true_positives': tp[i],
'false_positives': fp[i],
'support': nt[c]},
prefix=class_name)
if self.comet_log_confusion_matrix:
epoch = self.experiment.curr_epoch
class_names = list(self.class_names.values())
class_names.append('background')
num_classes = len(class_names)
self.experiment.log_confusion_matrix(
matrix=confusion_matrix.matrix,
max_categories=num_classes,
labels=class_names,
epoch=epoch,
column_label='Actual Category',
row_label='Predicted Category',
file_name=f'confusion-matrix-epoch-{epoch}.json',
)
def on_fit_epoch_end(self, result, epoch):
self.log_metrics(result, epoch=epoch)
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
self.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
def on_params_update(self, params):
self.log_parameters(params)
def finish_run(self):
self.experiment.end()

View File

@ -0,0 +1,150 @@
import logging
import os
from urllib.parse import urlparse
try:
import comet_ml
except (ModuleNotFoundError, ImportError):
comet_ml = None
import yaml
logger = logging.getLogger(__name__)
COMET_PREFIX = 'comet://'
COMET_MODEL_NAME = os.getenv('COMET_MODEL_NAME', 'yolov5')
COMET_DEFAULT_CHECKPOINT_FILENAME = os.getenv('COMET_DEFAULT_CHECKPOINT_FILENAME', 'last.pt')
def download_model_checkpoint(opt, experiment):
model_dir = f'{opt.project}/{experiment.name}'
os.makedirs(model_dir, exist_ok=True)
model_name = COMET_MODEL_NAME
model_asset_list = experiment.get_model_asset_list(model_name)
if len(model_asset_list) == 0:
logger.error(f'COMET ERROR: No checkpoints found for model name : {model_name}')
return
model_asset_list = sorted(
model_asset_list,
key=lambda x: x['step'],
reverse=True,
)
logged_checkpoint_map = {asset['fileName']: asset['assetId'] for asset in model_asset_list}
resource_url = urlparse(opt.weights)
checkpoint_filename = resource_url.query
if checkpoint_filename:
asset_id = logged_checkpoint_map.get(checkpoint_filename)
else:
asset_id = logged_checkpoint_map.get(COMET_DEFAULT_CHECKPOINT_FILENAME)
checkpoint_filename = COMET_DEFAULT_CHECKPOINT_FILENAME
if asset_id is None:
logger.error(f'COMET ERROR: Checkpoint {checkpoint_filename} not found in the given Experiment')
return
try:
logger.info(f'COMET INFO: Downloading checkpoint {checkpoint_filename}')
asset_filename = checkpoint_filename
model_binary = experiment.get_asset(asset_id, return_type='binary', stream=False)
model_download_path = f'{model_dir}/{asset_filename}'
with open(model_download_path, 'wb') as f:
f.write(model_binary)
opt.weights = model_download_path
except Exception as e:
logger.warning('COMET WARNING: Unable to download checkpoint from Comet')
logger.exception(e)
def set_opt_parameters(opt, experiment):
"""Update the opts Namespace with parameters
from Comet's ExistingExperiment when resuming a run
Args:
opt (argparse.Namespace): Namespace of command line options
experiment (comet_ml.APIExperiment): Comet API Experiment object
"""
asset_list = experiment.get_asset_list()
resume_string = opt.resume
for asset in asset_list:
if asset['fileName'] == 'opt.yaml':
asset_id = asset['assetId']
asset_binary = experiment.get_asset(asset_id, return_type='binary', stream=False)
opt_dict = yaml.safe_load(asset_binary)
for key, value in opt_dict.items():
setattr(opt, key, value)
opt.resume = resume_string
# Save hyperparameters to YAML file
# Necessary to pass checks in training script
save_dir = f'{opt.project}/{experiment.name}'
os.makedirs(save_dir, exist_ok=True)
hyp_yaml_path = f'{save_dir}/hyp.yaml'
with open(hyp_yaml_path, 'w') as f:
yaml.dump(opt.hyp, f)
opt.hyp = hyp_yaml_path
def check_comet_weights(opt):
"""Downloads model weights from Comet and updates the
weights path to point to saved weights location
Args:
opt (argparse.Namespace): Command Line arguments passed
to YOLOv5 training script
Returns:
None/bool: Return True if weights are successfully downloaded
else return None
"""
if comet_ml is None:
return
if isinstance(opt.weights, str):
if opt.weights.startswith(COMET_PREFIX):
api = comet_ml.API()
resource = urlparse(opt.weights)
experiment_path = f'{resource.netloc}{resource.path}'
experiment = api.get(experiment_path)
download_model_checkpoint(opt, experiment)
return True
return None
def check_comet_resume(opt):
"""Restores run parameters to its original state based on the model checkpoint
and logged Experiment parameters.
Args:
opt (argparse.Namespace): Command Line arguments passed
to YOLOv5 training script
Returns:
None/bool: Return True if the run is restored successfully
else return None
"""
if comet_ml is None:
return
if isinstance(opt.resume, str):
if opt.resume.startswith(COMET_PREFIX):
api = comet_ml.API()
resource = urlparse(opt.resume)
experiment_path = f'{resource.netloc}{resource.path}'
experiment = api.get(experiment_path)
set_opt_parameters(opt, experiment)
download_model_checkpoint(opt, experiment)
return True
return None

View File

@ -0,0 +1,118 @@
import argparse
import json
import logging
import os
import sys
from pathlib import Path
import comet_ml
logger = logging.getLogger(__name__)
FILE = Path(__file__).resolve()
ROOT = FILE.parents[3] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
from train import train
from utils.callbacks import Callbacks
from utils.general import increment_path
from utils.torch_utils import select_device
# Project Configuration
config = comet_ml.config.get_config()
COMET_PROJECT_NAME = config.get_string(os.getenv('COMET_PROJECT_NAME'), 'comet.project_name', default='yolov5')
def get_args(known=False):
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=300, help='total training epochs')
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
parser.add_argument('--noplots', action='store_true', help='save no plot files')
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--quad', action='store_true', help='quad dataloader')
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
# Weights & Biases arguments
parser.add_argument('--entity', default=None, help='W&B: Entity')
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
# Comet Arguments
parser.add_argument('--comet_optimizer_config', type=str, help='Comet: Path to a Comet Optimizer Config File.')
parser.add_argument('--comet_optimizer_id', type=str, help='Comet: ID of the Comet Optimizer sweep.')
parser.add_argument('--comet_optimizer_objective', type=str, help="Comet: Set to 'minimize' or 'maximize'.")
parser.add_argument('--comet_optimizer_metric', type=str, help='Comet: Metric to Optimize.')
parser.add_argument('--comet_optimizer_workers',
type=int,
default=1,
help='Comet: Number of Parallel Workers to use with the Comet Optimizer.')
return parser.parse_known_args()[0] if known else parser.parse_args()
def run(parameters, opt):
hyp_dict = {k: v for k, v in parameters.items() if k not in ['epochs', 'batch_size']}
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
opt.batch_size = parameters.get('batch_size')
opt.epochs = parameters.get('epochs')
device = select_device(opt.device, batch_size=opt.batch_size)
train(hyp_dict, opt, device, callbacks=Callbacks())
if __name__ == '__main__':
opt = get_args(known=True)
opt.weights = str(opt.weights)
opt.cfg = str(opt.cfg)
opt.data = str(opt.data)
opt.project = str(opt.project)
optimizer_id = os.getenv('COMET_OPTIMIZER_ID')
if optimizer_id is None:
with open(opt.comet_optimizer_config) as f:
optimizer_config = json.load(f)
optimizer = comet_ml.Optimizer(optimizer_config)
else:
optimizer = comet_ml.Optimizer(optimizer_id)
opt.comet_optimizer_id = optimizer.id
status = optimizer.status()
opt.comet_optimizer_objective = status['spec']['objective']
opt.comet_optimizer_metric = status['spec']['metric']
logger.info('COMET INFO: Starting Hyperparameter Sweep')
for parameter in optimizer.get_parameters():
run(parameter['parameters'], opt)

View File

@ -0,0 +1,193 @@
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
# WARNING ⚠️ wandb is deprecated and will be removed in future release.
# See supported integrations at https://github.com/ultralytics/yolov5#integrations
import logging
import os
import sys
from contextlib import contextmanager
from pathlib import Path
from utils.general import LOGGER, colorstr
FILE = Path(__file__).resolve()
ROOT = FILE.parents[3] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
RANK = int(os.getenv('RANK', -1))
DEPRECATION_WARNING = f"{colorstr('wandb')}: WARNING ⚠️ wandb is deprecated and will be removed in a future release. " \
f'See supported integrations at https://github.com/ultralytics/yolov5#integrations.'
try:
import wandb
assert hasattr(wandb, '__version__') # verify package import not local dir
LOGGER.warning(DEPRECATION_WARNING)
except (ImportError, AssertionError):
wandb = None
class WandbLogger():
"""Log training runs, datasets, models, and predictions to Weights & Biases.
This logger sends information to W&B at wandb.ai. By default, this information
includes hyperparameters, system configuration and metrics, model metrics,
and basic data metrics and analyses.
By providing additional command line arguments to train.py, datasets,
models and predictions can also be logged.
For more on how this logger is used, see the Weights & Biases documentation:
https://docs.wandb.com/guides/integrations/yolov5
"""
def __init__(self, opt, run_id=None, job_type='Training'):
"""
- Initialize WandbLogger instance
- Upload dataset if opt.upload_dataset is True
- Setup training processes if job_type is 'Training'
arguments:
opt (namespace) -- Commandline arguments for this run
run_id (str) -- Run ID of W&B run to be resumed
job_type (str) -- To set the job_type for this run
"""
# Pre-training routine --
self.job_type = job_type
self.wandb, self.wandb_run = wandb, wandb.run if wandb else None
self.val_artifact, self.train_artifact = None, None
self.train_artifact_path, self.val_artifact_path = None, None
self.result_artifact = None
self.val_table, self.result_table = None, None
self.max_imgs_to_log = 16
self.data_dict = None
if self.wandb:
self.wandb_run = wandb.init(config=opt,
resume='allow',
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
entity=opt.entity,
name=opt.name if opt.name != 'exp' else None,
job_type=job_type,
id=run_id,
allow_val_change=True) if not wandb.run else wandb.run
if self.wandb_run:
if self.job_type == 'Training':
if isinstance(opt.data, dict):
# This means another dataset manager has already processed the dataset info (e.g. ClearML)
# and they will have stored the already processed dict in opt.data
self.data_dict = opt.data
self.setup_training(opt)
def setup_training(self, opt):
"""
Setup the necessary processes for training YOLO models:
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
- Setup log_dict, initialize bbox_interval
arguments:
opt (namespace) -- commandline arguments for this run
"""
self.log_dict, self.current_epoch = {}, 0
self.bbox_interval = opt.bbox_interval
if isinstance(opt.resume, str):
model_dir, _ = self.download_model_artifact(opt)
if model_dir:
self.weights = Path(model_dir) / 'last.pt'
config = self.wandb_run.config
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str(
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \
config.hyp, config.imgsz
if opt.bbox_interval == -1:
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
if opt.evolve or opt.noplots:
self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
"""
Log the model checkpoint as W&B artifact
arguments:
path (Path) -- Path of directory containing the checkpoints
opt (namespace) -- Command line arguments for this run
epoch (int) -- Current epoch number
fitness_score (float) -- fitness score for current epoch
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
"""
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model',
type='model',
metadata={
'original_url': str(path),
'epochs_trained': epoch + 1,
'save period': opt.save_period,
'project': opt.project,
'total_epochs': opt.epochs,
'fitness_score': fitness_score})
model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
wandb.log_artifact(model_artifact,
aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
LOGGER.info(f'Saving model artifact on epoch {epoch + 1}')
def val_one_image(self, pred, predn, path, names, im):
pass
def log(self, log_dict):
"""
save the metrics to the logging dictionary
arguments:
log_dict (Dict) -- metrics/media to be logged in current step
"""
if self.wandb_run:
for key, value in log_dict.items():
self.log_dict[key] = value
def end_epoch(self):
"""
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
arguments:
best_result (boolean): Boolean representing if the result of this evaluation is best or not
"""
if self.wandb_run:
with all_logging_disabled():
try:
wandb.log(self.log_dict)
except BaseException as e:
LOGGER.info(
f'An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}'
)
self.wandb_run.finish()
self.wandb_run = None
self.log_dict = {}
def finish_run(self):
"""
Log metrics if any and finish the current W&B run
"""
if self.wandb_run:
if self.log_dict:
with all_logging_disabled():
wandb.log(self.log_dict)
wandb.run.finish()
LOGGER.warning(DEPRECATION_WARNING)
@contextmanager
def all_logging_disabled(highest_level=logging.CRITICAL):
""" source - https://gist.github.com/simon-weber/7853144
A context manager that will prevent any logging messages triggered during the body from being processed.
:param highest_level: the maximum logging level in use.
This would only need to be changed if a custom level greater than CRITICAL is defined.
"""
previous_level = logging.root.manager.disable
logging.disable(highest_level)
try:
yield
finally:
logging.disable(previous_level)

View File

@ -0,0 +1,30 @@
import sys
import frida
rdev = frida.get_usb_device()
session = rdev.attach(18802)
scr = """
Java.perform(function () {
var SwitchConfig = Java.use('mtopsdk.mtop.global.SwitchConfig');
SwitchConfig.isGlobalSpdySwitchOpen.overload().implementation = function(){
var ret = this.isGlobalSpdySwitchOpen.apply(this, arguments);
console.log("isGlobalSpdySwitchOpenl "+ret)
return false
}
})
"""
script = session.create_script(scr)
def on_message(message, data):
print('msg: ' + message)
if message['type'] == 'send':
print("[*] {0}".format(message['payload']))
else:
print(message)
script.on("message", on_message)
script.load()
sys.stdin.read()