提取pdf文件中图片和文字

This commit is contained in:
aiyingfeng 2023-08-01 14:24:53 +08:00
parent 749cf70dcd
commit b13155d7f2
4 changed files with 176 additions and 182 deletions

View File

@ -1,4 +1,4 @@
from program.discern import Discern
from program.testing_agency_report import TestingAgencyReport
discern = Discern()
discern.run('./file_test')
testing_agency_report = TestingAgencyReport()
testing_agency_report.run('./file', './target_img', './docs')

View File

@ -1,65 +0,0 @@
from datetime import datetime
from base import Base
from PIL import Image
import pytesseract
import platform
class ImageTextOcr(Base):
def __init__(self):
super(ImageTextOcr, self).__init__()
current_os = platform.system()
if current_os == 'Windows':
pytesseract.pytesseract.tesseract_cmd = r'E:\pc\tesseract-ocr\tesseract.exe'
self.log("当前操作系统是 Windows")
elif current_os == 'Linux':
self.log("当前操作系统是 Ubuntu")
else:
self.log(f"当前操作系统是 {current_os}")
def is_valid_time(self, input_str):
try:
valid_time = datetime.strptime(input_str, "%Y-%m-%d") # 根据实际时间格式调整
return valid_time
except ValueError:
return False
def image_text_ocr(self, text_dict, path):
valid_time_list = []
# 加载图像
image = Image.open(path)
result = pytesseract.image_to_string(image, config=r'--oem 3 --psm 6 -l chi_sim+eng')
lines = result.split()
for line in lines:
if 'S$T' in line or 'SST' in line:
text_dict['方案编号'] = line.replace('S$T', 'SST').replace('试验方案编号:', '')
if 'CNAS' in line:
text_dict['标志'] = 'cnas中文,'
if '200015344424' in line:
text_dict['标志'] = '国cma,'
valid_time = self.is_valid_time(line)
if valid_time:
valid_time_list.append(valid_time)
if valid_time_list:
text_dict['签发日期'] = max(valid_time_list).strftime("%Y-%m-%d")
return text_dict
def run(self, text_dict, path):
res_list = self.image_text_ocr(text_dict, path)
return res_list
if __name__ == '__main__':
image_text_ocr = ImageTextOcr()
text_dict = {
'方案编号': '',
'签发日期': '',
'标志': ''
}
res = image_text_ocr.run(text_dict, '../target_img/output_image-003.png')
print(res)

View File

@ -0,0 +1,101 @@
from datetime import datetime
from base import Base
import subprocess
from PIL import Image
import pandas as pd
import pytesseract
import platform
import os
class PDFBase(Base):
def __init__(self):
super(Base, self).__init__()
current_os = platform.system()
if current_os == 'Windows':
pytesseract.pytesseract.tesseract_cmd = r'E:\pc\tesseract-ocr\tesseract.exe'
self.log("当前操作系统是 Windows")
elif current_os == 'Linux':
self.log("当前操作系统是 Ubuntu")
else:
self.log(f"当前操作系统是 {current_os}")
def download_img(self, input_pdf, output_image):
"""
下载pdf中全部图片
:param input_pdf:
:param output_image:
:return:
"""
try:
subprocess.run(f"pdfimages -png '{input_pdf}' {output_image}/image", shell=True,
capture_output=True, text=True)
except Exception as e:
self.log(f"出现异常:{e}")
@staticmethod
def read_img_ocr(img_path):
"""
读取图片中文字内容
:param img_path:
:return:
"""
image = Image.open(img_path)
result = pytesseract.image_to_string(image, config=r'--oem 3 --psm 6 -l chi_sim+eng')
lines = result.split()
return lines
def remove_img(self, img_path):
"""
删除当前文件夹下所有的图片
:param img_path:
:return:
"""
with os.scandir(img_path) as entries:
for entry in entries:
if entry.is_file():
file_path = entry.path
try:
os.remove(file_path)
except Exception as e:
self.log(f"错误信息:{e}")
@staticmethod
def is_valid_time(input_str):
"""
判断是否是时间格式
:param input_str:
:return:
"""
try:
valid_time = datetime.strptime(input_str, "%Y-%m-%d")
return valid_time
except ValueError:
return False
@staticmethod
def export_excel(export, excel_path):
"""
将字典列表转换为DataFrame
:param export:
:return:
"""
pf = pd.DataFrame(list(export))
current_time = datetime.now()
formatted_time = current_time.strftime('%Y-%m-%d-%H-%M-%S')
file_path = pd.ExcelWriter(f'{excel_path}/无源{formatted_time}.xlsx')
# 替换空单元格
pf.fillna(' ', inplace=True)
# 输出
pf = pf.sort_values(by='样品名称')
pf.to_excel(file_path, index=False)
# 保存表格
file_path.close()
if __name__ == '__main__':
pdf_base = PDFBase()
# pdf_base.download_img('../file_test/1.pdf', '../target_img/')
res = pdf_base.read_img_ocr('../target_img/image-017.png')
print(res)

View File

@ -1,67 +1,56 @@
import pandas as pd
from PIL import Image
from program.pdf_base import PDFBase
import pdfplumber
import re
import PyPDF2
from datetime import datetime
from base import Base
from program.image_text_ocr import ImageTextOcr
import os
import cv2
import os
import re
class Discern(Base):
class TestingAgencyReport(PDFBase):
def __init__(self):
super(Discern, self).__init__()
self.image_text_ocr = ImageTextOcr()
super(TestingAgencyReport, self).__init__()
self.xlsx_keys = {}
self.xlsx_keys_list = []
self.num = 0
def export_excel(self, export):
# 将字典列表转换为DataFrame
pf = pd.DataFrame(list(export))
current_time = datetime.now()
formatted_time = current_time.strftime('%Y-%m-%d-%H-%M-%S')
file_path = pd.ExcelWriter(f'./docs/无源{formatted_time}.xlsx')
# 替换空单元格
pf.fillna(' ', inplace=True)
# 输出
pf = pf.sort_values(by='样品名称')
pf.to_excel(file_path, index=False)
# 保存表格
file_path.close()
def pdf_images(self, pdf_path, img_path):
self.download_img(pdf_path, img_path)
with os.scandir(img_path) as entries:
for entry in entries:
if entry.is_file():
text_dict = {
'方案编号': '',
'签发日期': '',
'标志': ''
}
def is_valid_time(self, input_str):
try:
valid_time = datetime.strptime(input_str, "%Y-%m-%d") # 根据实际时间格式调整
return valid_time
except ValueError:
return False
try:
lines = self.read_img_ocr(entry.path)
valid_time_list = []
for line in lines:
if 'S$T' in line or 'SST' in line:
text_dict['方案编号'] = line.replace('S$T', 'SST').replace('试验方案编号:', '')
def pdf_all_text(self, pdf_path):
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages[1:]:
# 提取页面文本
text = page.extract_text()
lines = text.split()
valid_time_list = []
for line in lines:
if 'SST' in line and not self.xlsx_keys['方案编号']:
self.xlsx_keys['方案编号'] = line
if 'CNAS' in line:
text_dict['标志'] = 'cnas中文,'
if '签发日期' in line and not self.xlsx_keys['签发日期']:
self.xlsx_keys['签发日期'] = line.replace('签发日期', '')
if '200015344424' in line:
text_dict['标志'] = '国cma,'
if 'GLP' in line:
self.xlsx_keys['标志'] += 'GLP,'
valid_time = self.is_valid_time(line)
if valid_time:
valid_time_list.append(valid_time)
if valid_time_list:
text_dict['签发日期'] = max(valid_time_list).strftime("%Y-%m-%d")
except cv2.error as c:
self.log(c)
valid_time = self.is_valid_time(line)
if valid_time:
valid_time_list.append(valid_time)
if valid_time_list:
self.xlsx_keys['签发日期'] = max(valid_time_list).strftime("%Y-%m-%d")
if text_dict.get('标志'):
self.xlsx_keys['标志'] += text_dict.get('标志')
if text_dict.get('方案编号'):
self.xlsx_keys['方案编号'] = text_dict.get('方案编号')
if text_dict.get('签发日期'):
self.xlsx_keys['签发日期'] = text_dict.get('签发日期')
def pdf_text(self, pdf_path):
with pdfplumber.open(pdf_path) as pdf:
@ -97,67 +86,32 @@ class Discern(Base):
self.xlsx_keys['公司名称'] = self.xlsx_keys['公司名称'].replace('中检华通威国际检验(苏州)有限公司', ''). \
replace('中检华通威国际检验(苏州)有限公司', '')
def processing_image(self, img_file, standard=205):
""" 1.将图片进行降噪处理, 通过二值化去掉后面的背景色并加深文字对比度 """
img = Image.open(img_file)
img = img.convert('L')
pixels = img.load()
for x in range(img.width):
for y in range(img.height):
if pixels[x, y] > standard:
pixels[x, y] = 255
else:
pixels[x, y] = 0
img.save(img_file)
def pdf_all_text(self, pdf_path):
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages[1:]:
# 提取页面文本
text = page.extract_text()
lines = text.split()
valid_time_list = []
for line in lines:
def pdf_images(self, pdf_path):
self.num = 0
pdf_reader = PyPDF2.PdfReader(pdf_path)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
xObject = page['/Resources']['/XObject'].get_object()
if 'SST' in line and not self.xlsx_keys['方案编号']:
self.xlsx_keys['方案编号'] = line
for obj in xObject:
if xObject[obj]['/Subtype'] == '/Image':
self.num += 1
image_file = f"./target_img/image_{self.num}.png"
with open(image_file, "wb") as f:
f.write(xObject[obj].get_data())
if page_num != 0:
self.processing_image(image_file)
if '签发日期' in line and not self.xlsx_keys['签发日期']:
self.xlsx_keys['签发日期'] = line.replace('签发日期', '')
def get_images_text(self):
for i in range(1, self.num + 1):
text_dict = {
'方案编号': '',
'签发日期': '',
'标志': ''
}
try:
text_dict = self.image_text_ocr.run(text_dict, f'./target_img/image_{i}.png')
except cv2.error as c:
self.log(c)
pass
if 'GLP' in line:
self.xlsx_keys['标志'] += 'GLP,'
if text_dict.get('标志'):
self.xlsx_keys['标志'] += text_dict.get('标志')
if text_dict.get('方案编号'):
self.xlsx_keys['方案编号'] = text_dict.get('方案编号')
if text_dict.get('签发日期'):
self.xlsx_keys['签发日期'] = text_dict.get('签发日期')
valid_time = self.is_valid_time(line)
if valid_time:
valid_time_list.append(valid_time)
if valid_time_list:
self.xlsx_keys['签发日期'] = max(valid_time_list).strftime("%Y-%m-%d")
def remove_file(self, folder_path):
with os.scandir(folder_path) as entries:
for entry in entries:
if entry.is_file():
file_path = entry.path
try:
os.remove(file_path)
except Exception as e:
pass
def run(self, folder_path):
with os.scandir(folder_path) as entries:
def discern(self, pdf_path, img_path, excel_path):
with os.scandir(pdf_path) as entries:
for entry in entries:
self.xlsx_keys = {
'登记日期': '',
@ -170,26 +124,30 @@ class Discern(Base):
'签发日期': '',
'公司名称': ''
}
self.remove_file('./target_img')
self.remove_img(img_path)
if entry.is_file():
file_path = entry.path
pdf_path = entry.path
file_name = entry.name
self.log(file_name)
self.xlsx_keys['文件名'] = file_name
self.pdf_text(file_path)
self.pdf_images(file_path)
self.get_images_text()
self.pdf_all_text(file_path)
self.pdf_text(pdf_path)
self.pdf_images(pdf_path, img_path)
self.pdf_all_text(pdf_path)
if not self.xlsx_keys['方案编号']:
matches = re.findall(r'SST\d+BB', file_name)
if matches:
self.xlsx_keys['方案编号'] = matches[0]
else:
self.log("未找到匹配的模式方案编号")
self.xlsx_keys_list.append(self.xlsx_keys)
self.export_excel(self.xlsx_keys_list)
self.export_excel(self.xlsx_keys_list, excel_path)
def run(self, pdf_path, img_path, excel_path):
self.discern(pdf_path, img_path, excel_path)
if __name__ == '__main__':
discern = Discern()
discern.run('./file_test')
testing_agency_report = TestingAgencyReport()
testing_agency_report.run('../file_test', '../target_img', '../docs')