mirror of
https://github.com/luzhisheng/js_reverse.git
synced 2025-04-19 18:24:51 +08:00
02pytorch基础语法
This commit is contained in:
parent
07e12b7625
commit
6667a6960b
0
机器学习/02pytorch基础语法/__init__.py
Normal file
0
机器学习/02pytorch基础语法/__init__.py
Normal file
5
机器学习/02pytorch基础语法/创建一个浮点数张量.py
Normal file
5
机器学习/02pytorch基础语法/创建一个浮点数张量.py
Normal file
@ -0,0 +1,5 @@
|
||||
import torch
|
||||
|
||||
# 在100~1000中随机整数
|
||||
t4 = torch.FloatTensor(2, 3, 4)
|
||||
print(t4)
|
4
机器学习/02pytorch基础语法/创建一个空张量.py
Normal file
4
机器学习/02pytorch基础语法/创建一个空张量.py
Normal file
@ -0,0 +1,4 @@
|
||||
import torch
|
||||
|
||||
t4 = torch.empty((2, 2, 3))
|
||||
print(t4)
|
4
机器学习/02pytorch基础语法/创建值1填充的张量.py
Normal file
4
机器学习/02pytorch基础语法/创建值1填充的张量.py
Normal file
@ -0,0 +1,4 @@
|
||||
import torch
|
||||
|
||||
t4 = torch.ones((2, 2, 3))
|
||||
print(t4)
|
5
机器学习/02pytorch基础语法/创建随机张量.py
Normal file
5
机器学习/02pytorch基础语法/创建随机张量.py
Normal file
@ -0,0 +1,5 @@
|
||||
import torch
|
||||
|
||||
# 在100~1000中随机整数
|
||||
t4 = torch.randint(low=100, high=1000, size=(2, 3, 4))
|
||||
print(t4)
|
4
机器学习/02pytorch基础语法/判断用的是cpu运算还是gpu运算.py
Normal file
4
机器学习/02pytorch基础语法/判断用的是cpu运算还是gpu运算.py
Normal file
@ -0,0 +1,4 @@
|
||||
import torch
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
print(device)
|
13
机器学习/02pytorch基础语法/张量.py
Normal file
13
机器学习/02pytorch基础语法/张量.py
Normal file
@ -0,0 +1,13 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
list_1 = [
|
||||
[1, 2, 3, 4, 5, 6],
|
||||
[1, 2, 3, 4, 5, 6],
|
||||
[1, 2, 3, 4, 5, 6],
|
||||
]
|
||||
print(list_1)
|
||||
print(np.array(list_1))
|
||||
|
||||
# 张量
|
||||
print(torch.tensor(list_1))
|
8
机器学习/02pytorch基础语法/张量和nump数组之间转换.py
Normal file
8
机器学习/02pytorch基础语法/张量和nump数组之间转换.py
Normal file
@ -0,0 +1,8 @@
|
||||
import torch
|
||||
|
||||
|
||||
t5 = torch.randint(low=100, high=1000, size=(2, 3, 4))
|
||||
print(t5.numpy())
|
||||
|
||||
t6 = torch.tensor([[[[[[[[[[[100]]]]]]]]]]])
|
||||
print(t6.item())
|
17
机器学习/02pytorch基础语法/张量数据合并拉升.py
Normal file
17
机器学习/02pytorch基础语法/张量数据合并拉升.py
Normal file
@ -0,0 +1,17 @@
|
||||
import torch
|
||||
|
||||
|
||||
list_8 = [[[792, 436, 928, 303],
|
||||
[809, 170, 778, 652],
|
||||
[967, 520, 419, 184]],
|
||||
|
||||
[[402, 754, 327, 979],
|
||||
[713, 926, 879, 934],
|
||||
[540, 953, 209, 369]]]
|
||||
t8 = torch.tensor(list_8)
|
||||
|
||||
# 合并成单列单行
|
||||
print(t8.view(-1))
|
||||
|
||||
# 拉升成4行6列
|
||||
print(t8.view(4, 6))
|
17
机器学习/02pytorch基础语法/张量求最大值.py
Normal file
17
机器学习/02pytorch基础语法/张量求最大值.py
Normal file
@ -0,0 +1,17 @@
|
||||
import torch
|
||||
|
||||
list_7 = [
|
||||
[792, 436, 928, 303],
|
||||
[809, 170, 778, 652],
|
||||
[967, 520, 419, 184]
|
||||
]
|
||||
t7 = torch.tensor(list_7)
|
||||
|
||||
# 求最大值
|
||||
print(t7.max())
|
||||
|
||||
# 列求最大值
|
||||
print(t7.max(dim=0))
|
||||
|
||||
# 行求最大值
|
||||
print(t7.max(dim=1))
|
14
机器学习/02pytorch基础语法/张量的切片操作.py
Normal file
14
机器学习/02pytorch基础语法/张量的切片操作.py
Normal file
@ -0,0 +1,14 @@
|
||||
import torch
|
||||
|
||||
list_10 = [[[792, 436, 928, 303],
|
||||
[809, 170, 778, 652],
|
||||
[967, 520, 419, 184]],
|
||||
[[402, 754, 327, 979],
|
||||
[713, 926, 879, 934],
|
||||
[540, 953, 209, 369]]]
|
||||
t10 = torch.tensor(list_10)
|
||||
|
||||
# 切第一个维度为1,其他维度不切
|
||||
print(t10[1:, :, :])
|
||||
|
||||
print(t10[1:, 2:, 3].item())
|
11
机器学习/02pytorch基础语法/张量的计算.py
Normal file
11
机器学习/02pytorch基础语法/张量的计算.py
Normal file
@ -0,0 +1,11 @@
|
||||
import torch
|
||||
|
||||
list_10 = [[[792, 436, 928, 303],
|
||||
[809, 170, 778, 652],
|
||||
[967, 520, 419, 184]],
|
||||
[[402, 754, 327, 979],
|
||||
[713, 926, 879, 934],
|
||||
[540, 953, 209, 369]]]
|
||||
t10 = torch.tensor(list_10)
|
||||
|
||||
print(t10*100)
|
17
机器学习/02pytorch基础语法/张量的轴交换.py
Normal file
17
机器学习/02pytorch基础语法/张量的轴交换.py
Normal file
@ -0,0 +1,17 @@
|
||||
import torch
|
||||
|
||||
list_9 = [[402, 754, 327, 979],
|
||||
[713, 926, 879, 934],
|
||||
[540, 953, 209, 369]]
|
||||
t9 = torch.tensor(list_9)
|
||||
|
||||
# 轴交换,列变行,行变成列
|
||||
print(t9.size())
|
||||
# 1和0代表维度顺序
|
||||
t9 = t9.permute(1, 0)
|
||||
print(t9)
|
||||
print(t9.size())
|
||||
|
||||
# 原维度是(2, 3, 4),改变下标顺序(1, 0, 2),变成了([3, 2, 4])
|
||||
t10 = torch.randint(low=100, high=1000, size=(2, 3, 4))
|
||||
print(t10.permute(1, 0, 2).size())
|
9
机器学习/02pytorch基础语法/数据类型转换一.py
Normal file
9
机器学习/02pytorch基础语法/数据类型转换一.py
Normal file
@ -0,0 +1,9 @@
|
||||
import torch
|
||||
|
||||
list_2 = [
|
||||
[127, 128, 129, 4, 5, 6],
|
||||
[1, 2, 3, 4, 5, 6],
|
||||
[1, 2, 3, 4, 5, 6],
|
||||
]
|
||||
t2 = torch.tensor(list_2, dtype=torch.int8) # [-128 - 127]
|
||||
print(t2)
|
12
机器学习/02pytorch基础语法/数据类型转换二.py
Normal file
12
机器学习/02pytorch基础语法/数据类型转换二.py
Normal file
@ -0,0 +1,12 @@
|
||||
import torch
|
||||
|
||||
|
||||
list_2 = [
|
||||
[127, 128, 3, 4, 5, 6],
|
||||
[1, 2, 3, 4, 5, 6],
|
||||
[1, 2, 3, 4, 5, 6],
|
||||
]
|
||||
t2 = torch.tensor(list_2) # [-128 - 127]
|
||||
print(t2.int())
|
||||
print(t2.double())
|
||||
print(t2.double().dtype)
|
11
机器学习/02pytorch基础语法/获取张量形状.py
Normal file
11
机器学习/02pytorch基础语法/获取张量形状.py
Normal file
@ -0,0 +1,11 @@
|
||||
import torch
|
||||
|
||||
list_3 = [
|
||||
[127, 128, 3, 4, 5, 6],
|
||||
[1, 2, 3, 4, 5, 6],
|
||||
[1, 2, 3, 4, 5, 6],
|
||||
]
|
||||
t3 = torch.tensor(list_3) # [-128 - 127]
|
||||
print(t3.shape)
|
||||
print(t3.size())
|
||||
|
Loading…
x
Reference in New Issue
Block a user