diff --git a/猿人学练习/23综合离谱的protobuf与jsvmp/23.html b/猿人学练习/23综合离谱的protobuf与jsvmp/23.html new file mode 100644 index 0000000..2fbf0cc --- /dev/null +++ b/猿人学练习/23综合离谱的protobuf与jsvmp/23.html @@ -0,0 +1,697 @@ + + + + + + + + + 第二十三题---现在的题目越发的离谱了,越来越尼玛的离谱! + + + + + + + + + + + + + + + + + + + + +

目标:采集非常离谱的100页的数字,并计算所有数据加和。 +

+
+ + + + + + + + + + + + + +
0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +
+
+
+
+
+
+ 答案: + +
+ + + +
+ + + diff --git a/猿人学练习/23综合离谱的protobuf与jsvmp/23.js b/猿人学练习/23综合离谱的protobuf与jsvmp/23.js new file mode 100644 index 0000000..d96e78e --- /dev/null +++ b/猿人学练习/23综合离谱的protobuf与jsvmp/23.js @@ -0,0 +1,363 @@ +!function(e, s, c, n, f) { + var b, i, o, r, d, t, u, g, h, y, C, x, j, k, p, l, w, a, D, B, v, q, z, m, I, S, K, H, E, A, G, L, N, R, F, M, V, U, T, J, O, Q, X, Y, Z, P, W, _, $, ee, se, ce, ne, fe, be, ie, oe, re, de, te, ue, ge, he, ye, Ce, xe, je, ke, pe, le, we, ae, De, Be, ve, qe, ze, me, Ie, Se, Ke, He, Ee, Ae, Ge, Le, Ne, Re, Fe, Me, Ve, Ue, Te, Je, Oe, Qe, Xe, Ye, Ze, Pe, We, _e, $e, es, ss, cs, ns, fs, bs, is, os, rs, ds, ts, us, gs, hs, ys, Cs, xs, js, ks, ps, ls, ws, as, Ds, Bs, vs, qs, zs, ms; + function Is(e) { + return e == r ? function(e) { + return e[Ge[U]]; + } : e == je ? function(e, s, c, n) { + for ((c = "") || (n = e); n < s; n++) { + c += Te(n); + } + return c; + } : e == z ? function(e, s, c) { + return c && s != Ge[o] ? e[Ge[o]](s) : s in e; + } : e == t ? function(e, s, c) { + return !(c = ss[e[s]]) || s != w && s != E ? c : e[Ge[O]] ? rs[e[Ge[O]]] : (e[Ge[O]] = e[Ge[G]] + Ge[O] + (e[Ge[C]] ^ q), + rs[e[Ge[O]]] = Bs(o, Bs(i, c), e[Ge[C]] & Ae), rs[e[Ge[O]]]); + } : e == h ? function(e, s, c, n) { + return (n = vs(s ? e[Ge[ce]](s) : e)) && [ c ? null : e[Ge[ce]](s + n[i], s + n[b] + n[i]), s + n[b] + n[i] ]; + } : e == be ? function(e, s, c) { + return (c = {})[Ge[T]] = function() { + return hs(function() { + return s ? +(e + Ge[L]) : Fe[Ge[g]][Ge[a]][Ge[V]](e); + }); + }, c[Ge[T]] = hs(c[Ge[T]]), us(Re, c, Ge[a], c), c; + } : e == ie ? function(e, s) { + return (s = {})[Ge[T]] = function() { + return ys[Ge[de]]++, e; + }, s[Ge[T]] = hs(s[Ge[T]]), s; + } : e == qe ? function(e) { + return gs[Ge[V]][Ge[he]](gs[Ge[V]], e); + } : e == g ? function(e, s, c, n, f, o, r) { + for (s = b, n = (c = e[Ge[Z]](bs)[b])[Ge[ce]](b, -i), f = c[ls(c) - i], s += ns[Ge[v]](f), + o = b, r = ls(n) - i; r >= b; r--) { + s += fs[Ge[v]](n[r]) * Ze(ls(fs), o) * ls(ns), o += i; + } + return [ s, ls(c) ]; + } : e == R ? (ys = {}) && us(i, zs, Ge[a], ((Cs = {})[Ge[T]] = function() { + return function() { + ss[Ge[te]](); + }; + }) && Cs) && b : e == ee ? (as = Ds, Cs + xs) : e == ue ? function(e, s) { + s ? e[v][Ge[te]]() || e[M][Ge[te]]() : e[v][Ge[je]](b) || e[M][Ge[je]](b); + } : e == O ? function(e, s, c, n, f) { + for ((n = []) && (f = b); f < ls(s); f++) { + n[f] = e == i ? s[Ge[h]](f) : Te(s[f] ^ c); + } + return e == i ? n : n[Ge[$]](Ge[L]); + } : e == o ? function(e) { + return (e = {}) && (e[v] = []) && (e[M] = []) && ((e[Ce] = b) || i) && e; + } : e == W ? function(e, s, c) { + return e ? s[ls(s) - i] : s[ls(s) - i] = c; + } : e == ce ? function(e, s, c, n) { + for (n = ls(e) - i; n >= b; n--) { + if (as(e[n][b], s, i)) { + return e[n][b][s] = c; + } + } + return e[b][b][s] = c; + } : e == V ? function(e, s, c, n, f, h, y, C) { + return (s = es[Ge[je]]) && (c = es[Ge[te]]) && (n = es[Ge[$]]) && (f = es[Ge[M]]) && (h = Ge[L][Ge[D]]) && (y = Pe[Ge[g]][Ge[fe]]) && (C = gs[Ge[_]]) && (ys[Ge[de]] = b), + us(Re, Ne[Ge[b]], js(Ge[R]), ks(Ue)) && us(Re, Fe[Ge[g]], js(Ge[a]), ks(Fe[Ge[g]][Ge[a]])) && us(Re, Me[Ge[g]], js(Ge[a]), ks(Me[Ge[g]][Ge[a]])) && us(Re, We[Ge[g]], js(Ge[a]), ks(We[Ge[g]][Ge[a]])) && us(Re, Ve[Ge[g]], js(Ge[a]), ks(Ve[Ge[g]][Ge[a]])) && us(Re, Pe[Ge[g]], js(Ge[a]), ks(Pe[Ge[g]][Ge[a]])) && us(Re, We[Ge[g]], js(Ge[je]), ks(s)) && us(Re, We[Ge[g]], js(Ge[te]), ks(c)) && us(Re, We[Ge[g]], js(Ge[$]), ks(n)) && us(Re, We[Ge[g]], js(Ge[M]), ks(f)) && us(Re, Fe[Ge[g]], js(Ge[D]), ks(h)) && us(Re, Pe[Ge[g]], js(Ge[fe]), ks(y)) && us(Re, gs, js(Ge[_]), ks(C)), + (e = function(e, s, c) { + return e == i ? Ge[G + i] += Te((i << k) + k) : e == o ? s(c)() : (e || b) == b ? ys[Ge[de]] : e == r ? Is[Ge[W]] : e == d ? E = p : e == t ? Ge[ce] = Ge[M] : e == u ? ps : void 0; + })[Ge[O]] = ys[Ge[de]], e; + } : e == oe ? function(e, s, c) { + return Ds(s, w) || Ds(s, U) || (c ? zs(e, s) : Ds(s, E)); + } : e == ne ? function(e, s, c) { + return (c = {})[Ge[T]] = hs(function() { + return s == Ge[E] ? ds : e; + }), Ue(e, js(Ge[de]), c); + } : e == te ? function(e, s) { + for (s = b; s < ls(e); s++) { + e[s] = e[s](); + } + } : e == we ? function(e, s) { + e[Ge[Y]](function(s, c, n, f) { + (f = hs(function() { + if (f[Ge[de]] > b) { + return f[Ge[de]] -= i, s; + } + }))[Ge[de]] = i, (n = {})[Ge[T]] = function() { + return f[Ge[de]] = b, Is; + }, e[c] = Ue(f, Ge[a], n); + }), s[Ge[O]] = b; + } : e == pe ? function(e, s, c, n, f, o) { + if (s == Ge[be] ? (o = !0, f = null) : s == Ge[A] ? (o = !0, f = zs(W)(i, e)[d]) : s == Ge[d] && (o = !0, + f = zs(W)(i, e)[g]), o) { + return f; + } + for (n = ls(e) - i; n >= b; n--) { + if (n == b && s == Ge[r] && (o = !0, f = e[b][b]), as(e[n][b], s, i) && (o = !0, + f = e[n][b][s]), o) { + return f; + } + if (n == b && (s == Ge[y] ? (o = !0, f = e[b][t]) : s == Ge[x] ? (o = !0, f = e[b][u]) : ((f = e[n][b][s]) || s in e[n][b]) && (o = !0), + o)) { + return f; + } + } + if (!c) { + throw Oe(s + Ge[F]); + } + } : e == Be ? function(e, s, c, n, f, r) { + return function t() { + return (r = [][Ge[M]](e, [ [ {}, n, c, this, arguments ] ])) && (f = zs(W)(i, r)) && (s !== Ge[be] ? f[b][s] = t : i) && (t[Ge[O]] === b && zs(te)(f[d]) || i) && f[i][Ge[Y]](function(e, s) { + as(e, E) ? f[b][Ds(e, E)] = f[d][s] : as(e, l) && (f[b][Ds(Ds(e[l], E), E)] = Qe(f[d])[Ge[Y]](function(e) { + return f[d][e]; + })[Ge[ce]](s)); + }), zs(r, f[o], zs(o)()); + }; + } : e == ze ? function e(s, c, f, xe, qe) { + var ze, Se, Ke, He, Ee, Ae, Le, Ne, Fe, Me, Ue, Te, Je, Oe, Qe, Xe, Ye, Pe, We, _e, $e, es, ss, cs, ns, fs, bs, is; + return s === ue ? Is(ue) : s === Be ? Is(Be) : s === o ? Is(o) : s === pe ? Is(pe) : s === W ? Is(W) : s === ce ? Is(ce) : s === oe ? Is(oe) : s === ne ? Is(ne) : s === te ? Is(te) : s === we ? Is(we) : (ps += i, + ze = c[Ge[G]], Se = c[ze], ze == Q ? function() { + throw e(s, Se[b]); + }() : ze == g ? function() { + debugger; + }() : ze == p || ze == w || ze == U || ze == H || ze == ne || ze == O || ze == k ? Ds(c, ze) : ze == Y ? Se[Ge[Y]](function(c) { + e(s, c); + }) : ze == Z ? function(c, n) { + as(Se[b], h) ? (c = e(s, Se[i]), Se[b][h][Ge[Y]](function(n, f) { + e(W)(i, s)[b][Ds(n, E)] = c[f]; + })) : (n = Ds(Se[b], E), c = e(s, Se[i]), as(Se[i], p) && Ds(Se[i], p) == l ? e(W)(i, s)[b][n] = e(W)(i, s)[b][n] : e(W)(i, s)[b][n] = c); + }() : ze == be ? Se[Ge[Y]](function(c) { + e(s, c, f); + }) : ze == z ? f ? e(W)(b, f[v], i) : b : ze == $ ? f ? e(W)(b, f[M], i) : b : ze == se || ze == W ? function(c, n, r, d, t, r) { + if (ze == se && (ds = ts()), n = Se[Ge[ke]](function(n) { + return n[A] ? e(s, n) && null : !n[Y] || (n[Y][Ge[Y]](function(n) { + c = n[Z][b], c = Ds(c, E), as(e(W)(i, s)[b], c) || (e(W)(i, s)[b][c] = void 0); + }), !0); + }), ze == se) { + for (r = e(o)(), d = b; d < ls(n); d++) { + if (t = e(s, n[d], r), r[Ce]) { + return t; + } + } + } else if (ze == W) { + for (r = f, d = b; d < ls(n); d++) { + if (e(W)(i, r[M])) { + e(W)(b, r[M], b); + break; + } + if (t = e(s, n[d], r), e(W)(i, r[v])) { + break; + } + if (r[Ce]) { + return t; + } + } + } + }() : ze == y ? function(c, n) { + for (c = f, e(ue)(c), e(s, Se[b]); e(s, Se[i]); e(s, Se[o])) { + if (e(W)(i, c[M])) { + e(W)(b, c[M], b); + } else { + if (n = e(s, Se[r], c), e(W)(i, c[v])) { + break; + } + if (c[Ce]) { + return n; + } + } + } + e(ue)(c, i); + }() : ze == V || ze == ce ? function(c, n, r, d, t) { + function u(s, c, f, o, r) { + c[f][Ge[Y]](function(c) { + as(c, f) ? u(s, c, f, o, r) : as(c, E) && (n ? (n = !1, r ? e(W)(i, s)[b][Ds(c, E)] = o : e(ce)(s, Ds(c, E), o)) : r ? e(W)(i, s)[b][Ds(c, E)] = void 0 : e(ce)(s, Ds(c, E), void 0)); + }); + } + function g(s, c, n, f, o, r) { + c[n][Ge[Y]](function(c) { + o = c[Z], r = o[b], as(r, E) ? e(W)(i, s)[b][Ds(r, E)] = f : as(r, h) && u(s, r, h, f, i); + }); + } + for (d in c = f, e(ue)(c), n = !0, r = e(s, Se[i])) { + if (ze == ce && (d = r[d]), e(W)(i, c[M])) { + e(W)(b, c[M], b); + } else { + if (as(Se[b], E) ? e(ce)(s, Ds(Se[b], E), d) : as(Se[b], h) ? (u(s, Se[b], h, d), + n = !0) : as(Se[b], Y) && (g(s, Se[b], Y, d), n = !0), t = e(s, Se[o], c), e(W)(i, c[v])) { + break; + } + if (c[Ce]) { + return t; + } + } + } + e(ue)(c, i); + }() : ze == R ? function(c) { + c = f, e(ue)(c); + do { + if (e(W)(i, c[M])) { + e(W)(b, c[M], b); + } else { + if (He = e(s, Se[i], c), e(W)(i, c[v])) { + break; + } + if (c[Ce]) { + return He; + } + } + } while (e(s, Se[b], c)); + e(ue)(c, i); + }() : ze == x ? function(c) { + for (c = f, e(ue)(c); e(s, Se[b]); ) { + if (e(W)(i, c[M])) { + e(W)(b, c[M], b); + } else { + if (He = e(s, Se[i], c), e(W)(i, c[v])) { + break; + } + if (c[Ce]) { + return He; + } + } + } + e(ue)(c, i); + }() : ze == K ? function(c, n, r) { + c = f, n = !1; + try { + if (r = e(s, Se[b], c), c[Ce]) { + return n = !0, r; + } + } catch (f) { + if (r = e(s, Se[i], c, f), c[Ce]) { + return n = !0, r; + } + } finally { + if (r = e(s, Se[o], c), c[Ce] && !n) { + return r; + } + } + }() : ze == B ? function(c, n, o, r, d, t, u, g, h, y, C) { + for (c = f, n = e(s, Se[b]), o = Se[Ge[ce]](i), r = !1, d = !1, e(ue)(c), t = b; t < ls(o) && !e(W)(i, c[M]); t++) { + if (h = (g = e(s, o[t], n))[b], y = g[i], n === h && (r = !0), r) { + for (u = b; u < ls(y); u++) { + if (C = e(s, y[u], c), e(W)(i, c[v])) { + d = !0; + break; + } + if (c[Ce]) { + return C; + } + } + if (d) { + break; + } + } + } + e(ue)(c, i); + }() : ze == L ? [ as(Se[b], E) && Ds(Se[b], E) == Ge[be] ? f : e(s, Se[b]), Se[Ge[ce]](i) ] : ze == E ? e(pe)(s, Ds(c, ze)) : ze == v ? ((Ke = {})[Ds(Se[b], E)] = xe, + s[Ge[je]]([ Ke, null ]), He = e(s, Se[i], f), s[Ge[te]](), f[Ce] ? He : void 0) : ze == a ? Se[Ge[Y]](function(c) { + return e(s, c)[Ge[a]](); + })[Ge[$]](Ge[L]) : ze == o ? e(s, Se[b]) : ze == fe ? (Ee = Ds(Se[b], p), Ae = Se[i], + Le = function(s, c, n, f, r, d, t, u) { + return as(n, b) ? (u = n[b], t = e(s, u[b]), u = e(oe)(s, u[i], e(s, u[o]) == ve), + d = !0) : n = Ds(n, E), r && (f = e(s, f)), c == ye ? d ? t[u] = f : e(ce)(s, n, f) : c == Y ? d ? t[u] += f : e(ce)(s, n, e(pe)(s, n) + f) : c == w ? d ? t[u] -= f : e(ce)(s, n, e(pe)(s, n) - f) : c == $ ? d ? t[u] *= f : e(ce)(s, n, e(pe)(s, n) * f) : c == le ? d ? t[u] /= f : e(ce)(s, n, e(pe)(s, n) / f) : c == U ? d ? t[u] %= f : e(ce)(s, n, e(pe)(s, n) % f) : c == k ? d ? t[u] <<= f : e(ce)(s, n, e(pe)(s, n) << f) : c == H ? d ? t[u] >>= f : e(ce)(s, n, e(pe)(s, n) >> f) : c == he ? d ? t[u] >>>= f : e(ce)(s, n, e(pe)(s, n) >>> f) : c == a ? d ? t[u] &= f : e(ce)(s, n, e(pe)(s, n) & f) : c == p ? d ? t[u] |= f : e(ce)(s, n, e(pe)(s, n) | f) : c == ge ? d ? t[u] ^= f : e(ce)(s, n, e(pe)(s, n) ^ f) : c == E ? d ? t[u] = Ze(t[u], f) : e(ce)(s, n, Ze(e(pe)(s, n), f)) : void 0; + }, as(Ae, h) ? (Ne = e(s, Se[o]), Ae[h][Ge[Y]](function(e, c) { + return Le(s, Ee, e, Ne[c]); + })) : Le(s, Ee, Ae, Se[o], i)) : ze == r ? e(s, Se[b]) : ze == S ? function(c, n) { + for ((c = []) && (n = b); n < ls(Se); n++) { + as(Se[n], F) || (c[n] = e(s, Se[n])); + } + return c; + }() : ze == J ? ((Ee = Ds(Se[b], p)) || i) && ((Fe = e(s, Se[i])) || i) && ((Me = e(s, Se[o])) || i) && (Ee == G ? Fe + Me : Ee == Z ? Fe - Me : Ee == X ? Fe / Me : Ee == A ? Fe * Me : Ee == i ? Ze(Fe, Me) : Ee == b ? Fe % Me : Ee == J ? Fe < Me : Ee == me ? Fe <= Me : Ee == fe ? Fe > Me : Ee == P ? Fe >= Me : Ee == F ? Fe in Me : Ee == y ? Fe & Me : Ee == se ? Fe != Me : Ee == x ? Fe !== Me : Ee == re ? Fe | Me : Ee == q ? Fe ^ Me : Ee == C ? Fe == Me : Ee == m ? Fe === Me : Ee == De ? Fe << Me : Ee == B ? Fe >> Me : Ee == L ? Fe >>> Me : Ee == T ? Fe instanceof Me : void 0) : ze == i ? ((Ue = f) && (Ue[Ce] = i), + He = Se[Ge[Y]](function(c) { + return e(s, c); + }), e(W)(i, He)) : ze == d ? (He = {}, Se[Ge[Y]](function(c) { + Te = e(s, c), Je = Te[b], Oe = Te[i], Te[o] ? ((Qe = {}) && (Qe[Ge[B]] = !0) && (Qe[Ge[m]] = !0), + Te[o] == i ? (Qe[Ge[T]] = Oe, us(Re, He, Je, Qe)) : Te[o] == o && (Qe[Ge[ie]] = Oe, + us(Re, He, Je, Qe))) : He[Je] = Oe; + }), He) : ze == D ? [ e(oe)(s, Se[b], e(s, e(W)(i, Se)) == ve), e(s, Se[i]) ] : ze == j ? ((Xe = e(s, e(W)(i, Se))) == _ ? Me = i : Xe == Ie && (Me = o), + Se = Se[Ge[ce]](b, -i), Ye = e(s, e(W)(i, Se)) == ve, Se = Se[Ge[ce]](b, -i), Je = e(oe)(s, e(W)(i, Se), Ye), + Oe = Se[ls(Se) - o], Pe = Se[Ge[ce]](b, ls(Se) - o), We = e(ne)(e(Be)(s, js(Je), Oe, Pe), Je)[Ge[de]], + [ Je, We, Me ]) : ze == G ? e(W)(i, Se[Ge[Y]](function(c) { + return e(s, c); + })) : ze == _ ? ((He = e(s, Se[b]) ? e(s, Se[i], f) : e(s, Se[o], f)) || i) && f[Ce] ? He : void 0 : ze == q ? (_e = e(s, Se[b]), + $e = e(s, Se[i]), es = Se[o], function(s, c, n, f, r, d) { + return c == K ? as(f, b) ? (d = f[b], r = e(s, d[b]), d = e(oe)(s, d[i], e(s, d[o]) == ve), + n == ve ? ++r[d] : r[d]++) : (d = e(s, f), as(f, E) && e(ce)(s, Ds(f, E), d + i), + n == ve ? d + i : d) : c == Q ? as(f, b) ? (d = f[b], r = e(s, d[b]), d = e(oe)(s, d[i], e(s, d[o]) == ve), + n == ve ? --r[d] : r[d]--) : (d = e(s, f), as(f, E) && e(ce)(s, Ds(f, E), d - i), + n == ve ? d - i : d) : void 0; + }(s, _e, $e, es)) : (ze ^ u) < i ? e(s, e(W)(i, Se), b, b, b)[Ge[X]](b, Se[Ge[ce]](b, -i)[Ge[Y]](function(c) { + return e(s, c); + })) : ze == A ? ls(Se) <= o && as(Se[b], U) ? e(W)(i, s)[b][Ds(e(W)(i, Se), E)] = n[e(s, Se[b])] : (Je = Ds(e(W)(i, Se), E)) && (e(W)(i, s)[b][Je] = e(ne)(e(Be)(s, js(Je), Se[ls(Se) - o], Se[Ge[ce]](b, ls(Se) - o)), Je)[Ge[de]]) : ze == C ? e(s, Se[b]) ? e(s, Se[i]) : e(s, Se[o]) : ze == I ? function(s, c, n, f, r, t) { + return c == G ? +e(s, n) : c == Z ? -e(s, n) : c == S ? !e(s, n) : c == d ? ~e(s, n) : c == D ? as(n, E) ? typeof e(pe)(s, Ds(n, E), i) : typeof e(s, n) : c != ae ? c == j ? as(n, E) ? as(e(W)(i, s)[b], Ds(n, E)) ? delete e(W)(i, s)[b][Ds(n, E)] : (t = Ds(n, E)) == Ge[x] ? delete module : t != Ge[y] || delete exports : as(n, b) ? (r = n[b], + delete e(s, r[b])[r = e(oe)(s, r[i], e(s, r[o]) == ve)]) : (e(s, n), !0) : void 0 : void e(s, n); + }(s, e(s, Se[b]), Se[i]) : ze == ee ? function(s, c, n, f) { + return c == I ? n || e(s, f) : c == N ? n && e(s, f) : void 0; + }(s, e(s, Se[b]), e(s, Se[i]), Se[o]) : ze == m ? ls(Se) <= o && as(Se[b], U) ? n[e(s, Se[b])] : e(ne)(e(Be)(s, Ds(e(W)(i, Se), E), Se[ls(Se) - o], Se[Ge[ce]](b, ls(Se) - o)))[Ge[de]] : ze == M ? (Oe = e(W)(i, Se), + Pe = Se[Ge[ce]](b, ls(Se) - i), We = e(ne)(e(Be)(s, Ge[be], Oe, Pe))[Ge[de]]) : ze == t ? e(W)(i, s)[r] : ze == b ? (Oe = e(oe)(s, Se[i], e(s, Se[o]) == ve), + ss = xe || [], We = e(s, Se[b], typeof f != Ge[Q] ? i : f + i, ss, qe), f ? (ss[Ge[je]](Oe), + [ We, We[Oe] ]) : (ss[Ge[Y]](function(e) { + return We = We[b], e; + })[Ge[Y]](function(e) { + We = We[e]; + }), qe && qe[de] ? function() { + return We[Oe][Ge[X]](We, (cs = arguments) && cs[Ge[re]][Ge[O]] === b && e(te)(cs) || cs); + } : We[Oe])) : ze == T || ze == P ? (is = Se[Ge[ce]](b, -i)[Ge[Y]](function(c) { + return as(c, r) ? bs = e(s, c) : e(s, c); + }), (is = bs ? is[Ge[ce]](b, ls(is) - i)[Ge[M]](bs) : is) && (ns = typeof f == Ge[P] ? f : {}) && (ns[de] = i) && (fs = e(s, e(W)(i, Se), b, b, ns)) && (ze == P && e(we)(is, fs) || i) && fs[Ge[X]](void 0, is)) : ze == N ? new (Ve[Ge[g]][Ge[he]][Ge[X]](e(s, e(W)(i, Se)), [ b ][Ge[M]](Se[Ge[ce]](b, ls(Se) - i)[Ge[Y]](function(c) { + return e(s, c); + }))))() : void 0); + } : e == u ? function(e, s, c, n, f, o, r, d) { + for (c = (s = qs(e, b))[b], n = s[i], c = function(e, s, c, n, f, o, r, d, t) { + for (e = e[Ge[Z]](Pe(bs, Ge[xe])), s = vs(e[Ge[ce]](b, i)[b])[b], c = e[Ge[ce]](i, -i), + n = [], c[Ge[Y]](function(e) { + for (f = vs(e)[b][Ge[a]](w), o = h - ls(f), r = b; r < o; r++) { + f = Ge[Ce] + f; + } + n[Ge[je]](f); + }), d = vs(e[Ge[ce]](-i)[b])[b][Ge[a]](w), t = s - ls(c) * h - ls(d), r = b; r < t; r++) { + d = Ge[Ce] + d; + } + return n[Ge[je]](d), n[Ge[$]](Ge[L]); + }(c); ls(c); ) { + r = Ye(c[Ge[ce]](b, i), w), d = Ye(c[Ge[ce]](i, i + r), w), o = i + r + d, es[Ge[je]](c[Ge[ce]](i + r, i + r + d)), + c = c[Ge[ce]](o); + } + return e[Ge[ce]](n); + } : (Le = function e(s, c) { + function n(e, s, c, n, f) { + for ((f = "") || (c = e); c < s; c++) { + f += String.fromCharCode(c); + } + return f; + } + return (s = e.o ? e.o : n($, de) + n(Ke, He) + n(xe, Se)) && (c = e.t ? e.t : n(Ke, He) + n(xe, Se) + n(de, xe) + n(Z, P) + n(W, _) + n(Ee, Ae)) && function(e, n, f, o) { + for ((n = "") || (f = b); f < e.length; f++) { + n += (o = c.indexOf(e[f])) != -i ? s[o] : e[f]; + } + return n; + }; + }(), [ "YltomD", "nomyno>;SMywzyxoxD", "rkCYGxZByzoBDI", "GsxnyG", "FwzJv_kBqEwoxDC", "vkCDSxnoHYp", "XEwloB", "zByDyDIzo", "mrkBMynoKD", "oHzyBDC", "F", "wynEvo", "zkBCoSxD", "]", "sCKBBkI", "%$&", "[", "Dy