mirror of
https://github.com/wlkjyh/dianxuan.git
synced 2025-04-07 02:30:31 +08:00
103 lines
3.2 KiB
Python
103 lines
3.2 KiB
Python
import cv2
|
|
import numpy as np
|
|
from keras.models import load_model
|
|
from keras.layers import Lambda
|
|
from keras import backend as K
|
|
import os
|
|
import random
|
|
"""
|
|
孪生网络 对比模型
|
|
"""
|
|
resize_height, resize_width, channel = 52, 52, 3
|
|
weight = "./best.h5"
|
|
|
|
output = Lambda(lambda x: K.abs(x[0] - x[1]))
|
|
model = load_model(weight, custom_objects={'output': output})
|
|
|
|
|
|
image_path = os.listdir("./data")
|
|
# 随机选取一张图片
|
|
# inp = input('请输入图片名称:')
|
|
image_path = "./data/" + random.choice(image_path)
|
|
# image_path = './sample/' + inp
|
|
weight = "./yolov3-tiny_17000.weights"
|
|
cfg = "./yolov3-tiny.cfg"
|
|
img = cv2.imread(image_path)
|
|
# 加载模型
|
|
net = cv2.dnn.readNet(weight, cfg)
|
|
height, width, channels = img.shape
|
|
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False) # 预处理
|
|
|
|
net.setInput(blob)
|
|
outs = net.forward(net.getUnconnectedOutLayersNames())
|
|
class_ids = []
|
|
confidences = []
|
|
boxes = []
|
|
for out in outs:
|
|
for detection in out:
|
|
scores = detection[5:]
|
|
class_id = np.argmax(scores)
|
|
confidence = scores[class_id]
|
|
|
|
if confidence > 0.1:
|
|
center_x = int(detection[0] * width)
|
|
center_y = int(detection[1] * height)
|
|
w = int(detection[2] * width)
|
|
h = int(detection[3] * height)
|
|
|
|
x = int(center_x - w / 2)
|
|
y = int(center_y - h / 2)
|
|
|
|
boxes.append([x, y, w, h])
|
|
confidences.append(float(confidence))
|
|
class_ids.append(class_id)
|
|
|
|
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.1, 0.1)
|
|
|
|
thickness = 2
|
|
color = (0, 255, 0)
|
|
font = cv2.FONT_HERSHEY_PLAIN
|
|
|
|
new_boxes = []
|
|
|
|
for i in range(len(boxes)):
|
|
if i in indexes:
|
|
x, y, w, h = boxes[i]
|
|
|
|
new_boxes.append([x, y, w, h])
|
|
|
|
up_img = sorted(new_boxes, key=lambda x_: x_[1])[0:len(new_boxes)//2] # 按照y排列 取出上面的
|
|
up_img = sorted(up_img, key=lambda x_: x_[0]) # 按照x排序
|
|
|
|
location_up = {}
|
|
for i, j in enumerate(up_img):
|
|
location_up[i+1] = [img[j[1]:j[1]+j[3], j[0]:j[0]+j[2]].astype('float64') / 255.0, j]
|
|
|
|
down_img = sorted(new_boxes, key=lambda x_: x_[1])[len(new_boxes)//2:] # 取出下面的
|
|
down_img = sorted(down_img, key=lambda x_: x_[0]) # 按照x排序
|
|
|
|
location_down = {}
|
|
for i, j in enumerate(down_img):
|
|
# location[i+1] = j
|
|
location_down[i+1] = [img[j[1]:j[1]+j[3], j[0]:j[0]+j[2]].astype('float64') / 255.0, j]
|
|
|
|
new_list = []
|
|
for down_i, down_img_ in location_down.items():
|
|
# 先是读取下面的图
|
|
temp = []
|
|
for up_i, up_img_ in location_up.items():
|
|
down = np.expand_dims(cv2.resize(down_img_[0], (52, 52)), axis=0)
|
|
up = np.expand_dims(cv2.resize(up_img_[0], (52, 52)), axis=0)
|
|
predict = model.predict([down, up])
|
|
temp.append(predict[0][0])
|
|
temp_ = temp.index(max(temp))
|
|
new_list.append([down_img_[1], temp_])
|
|
|
|
for (box, pos) in new_list:
|
|
x, y, w, h = box[0], box[1], box[2], box[3]
|
|
x1, y1, x2, y2 = x, y, x + w, y + h
|
|
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255))
|
|
cv2.putText(img, str(pos+1), (x1, y1), cv2.FONT_HERSHEY_PLAIN, 1, color, thickness)
|
|
cv2.imshow('1', img)
|
|
cv2.waitKey(0)
|