mirror of
https://github.com/wlkjyh/dianxuan.git
synced 2025-04-04 22:54:15 +08:00
125 lines
3.9 KiB
Python
125 lines
3.9 KiB
Python
import cv2
|
||
import numpy as np
|
||
from keras.models import load_model
|
||
from keras.layers import Lambda
|
||
from keras import backend as K
|
||
import os
|
||
import random
|
||
"""
|
||
孪生网络 对比模型
|
||
"""
|
||
resize_height, resize_width, channel = 52, 52, 3
|
||
weight = "./best.h5"
|
||
|
||
output = Lambda(lambda x: K.abs(x[0] - x[1]))
|
||
model = load_model(weight, custom_objects={'output': output})
|
||
|
||
|
||
image_path = os.listdir("./data")
|
||
# 随机选取一张图片
|
||
# inp = input('请输入图片名称:')
|
||
image_path = "./data/" + random.choice(image_path)
|
||
# image_path = './123.png'
|
||
weight = "./yolov3-tiny_17000.weights"
|
||
cfg = "./yolov3-tiny.cfg"
|
||
img = cv2.imread(image_path)
|
||
# 加载模型
|
||
net = cv2.dnn.readNet(weight, cfg)
|
||
height, width, channels = img.shape
|
||
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False) # 预处理
|
||
|
||
net.setInput(blob)
|
||
outs = net.forward(net.getUnconnectedOutLayersNames())
|
||
class_ids = []
|
||
confidences = []
|
||
boxes = []
|
||
for out in outs:
|
||
for detection in out:
|
||
scores = detection[5:]
|
||
class_id = np.argmax(scores)
|
||
confidence = scores[class_id]
|
||
|
||
if confidence > 0.1:
|
||
center_x = int(detection[0] * width)
|
||
center_y = int(detection[1] * height)
|
||
w = int(detection[2] * width)
|
||
h = int(detection[3] * height)
|
||
|
||
x = int(center_x - w / 2)
|
||
y = int(center_y - h / 2)
|
||
|
||
boxes.append([x, y, w, h])
|
||
confidences.append(float(confidence))
|
||
class_ids.append(class_id)
|
||
|
||
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.1, 0.1)
|
||
|
||
thickness = 2
|
||
color = (0, 255, 0)
|
||
font = cv2.FONT_HERSHEY_PLAIN
|
||
|
||
new_boxes = []
|
||
|
||
for i in range(len(boxes)):
|
||
if i in indexes:
|
||
x, y, w, h = boxes[i]
|
||
|
||
new_boxes.append([x, y, w, h])
|
||
|
||
up_img = sorted(new_boxes, key=lambda x_: x_[1])[0:len(new_boxes)//2] # 按照y排列 取出上面的
|
||
up_img = sorted(up_img, key=lambda x_: x_[0]) # 按照x排序
|
||
|
||
location_up = {}
|
||
for i, j in enumerate(up_img):
|
||
location_up[i+1] = [img[j[1]:j[1]+j[3], j[0]:j[0]+j[2]].astype('float64') / 255.0, j]
|
||
|
||
down_img = sorted(new_boxes, key=lambda x_: x_[1])[len(new_boxes)//2:] # 取出下面的
|
||
down_img = sorted(down_img, key=lambda x_: x_[0]) # 按照x排序
|
||
|
||
location_down = {}
|
||
for i, j in enumerate(down_img):
|
||
# location[i+1] = j
|
||
location_down[i+1] = [img[j[1]:j[1]+j[3], j[0]:j[0]+j[2]].astype('float64') / 255.0, j]
|
||
|
||
new_list = []
|
||
rate = []
|
||
for down_i, down_img_ in location_down.items():
|
||
# 先是读取下面的图
|
||
temp = []
|
||
for up_i, up_img_ in location_up.items():
|
||
down = np.expand_dims(cv2.resize(down_img_[0], (52, 52)), axis=0)
|
||
up = np.expand_dims(cv2.resize(up_img_[0], (52, 52)), axis=0)
|
||
predict = model.predict([down, up])
|
||
temp.append(predict[0][0])
|
||
temp_ = temp.index(max(temp))
|
||
new_list.append([down_img_[1], temp_])
|
||
rate.append(max(temp))
|
||
|
||
# 如果在new_list出现重复的序号,就计算谁的概率大,概率最小那个替换为不同的
|
||
for i in range(len(new_list)):
|
||
for j in range(len(new_list)):
|
||
if i != j:
|
||
if new_list[i][1] == new_list[j][1]:
|
||
if rate[i] > rate[j]:
|
||
new_list[j][1] = new_list[j][1] + 1
|
||
else:
|
||
new_list[i][1] = new_list[i][1] + 1
|
||
|
||
|
||
|
||
select_location = []
|
||
|
||
for (box, pos) in new_list:
|
||
x, y, w, h = box[0], box[1], box[2], box[3]
|
||
x1, y1, x2, y2 = x, y, x + w, y + h
|
||
select_location.append([x1, y1, x2, y2, pos+1])
|
||
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255))
|
||
cv2.putText(img, str(pos+1), (x1, y1), cv2.FONT_HERSHEY_PLAIN, 1, color, thickness)
|
||
# print(select_location)
|
||
# 按照最后的位置排序从小到大
|
||
select_location = sorted(select_location, key=lambda x_: x_[4])
|
||
print(select_location)
|
||
|
||
cv2.imshow('1', img)
|
||
cv2.waitKey(0)
|