import cv2 import numpy as np from keras.models import load_model from keras.layers import Lambda from keras import backend as K import os import random """ 孪生网络 对比模型 """ resize_height, resize_width, channel = 52, 52, 3 weight = "./best.h5" output = Lambda(lambda x: K.abs(x[0] - x[1])) model = load_model(weight, custom_objects={'output': output}) image_path = os.listdir("./data") # 随机选取一张图片 # inp = input('请输入图片名称:') image_path = "./data/" + random.choice(image_path) # image_path = './123.png' weight = "./yolov3-tiny_17000.weights" cfg = "./yolov3-tiny.cfg" img = cv2.imread(image_path) # 加载模型 net = cv2.dnn.readNet(weight, cfg) height, width, channels = img.shape blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False) # 预处理 net.setInput(blob) outs = net.forward(net.getUnconnectedOutLayersNames()) class_ids = [] confidences = [] boxes = [] for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.1: center_x = int(detection[0] * width) center_y = int(detection[1] * height) w = int(detection[2] * width) h = int(detection[3] * height) x = int(center_x - w / 2) y = int(center_y - h / 2) boxes.append([x, y, w, h]) confidences.append(float(confidence)) class_ids.append(class_id) indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.1, 0.1) thickness = 2 color = (0, 255, 0) font = cv2.FONT_HERSHEY_PLAIN new_boxes = [] for i in range(len(boxes)): if i in indexes: x, y, w, h = boxes[i] new_boxes.append([x, y, w, h]) up_img = sorted(new_boxes, key=lambda x_: x_[1])[0:len(new_boxes)//2] # 按照y排列 取出上面的 up_img = sorted(up_img, key=lambda x_: x_[0]) # 按照x排序 location_up = {} for i, j in enumerate(up_img): location_up[i+1] = [img[j[1]:j[1]+j[3], j[0]:j[0]+j[2]].astype('float64') / 255.0, j] down_img = sorted(new_boxes, key=lambda x_: x_[1])[len(new_boxes)//2:] # 取出下面的 down_img = sorted(down_img, key=lambda x_: x_[0]) # 按照x排序 location_down = {} for i, j in enumerate(down_img): # location[i+1] = j location_down[i+1] = [img[j[1]:j[1]+j[3], j[0]:j[0]+j[2]].astype('float64') / 255.0, j] new_list = [] rate = [] for down_i, down_img_ in location_down.items(): # 先是读取下面的图 temp = [] for up_i, up_img_ in location_up.items(): down = np.expand_dims(cv2.resize(down_img_[0], (52, 52)), axis=0) up = np.expand_dims(cv2.resize(up_img_[0], (52, 52)), axis=0) predict = model.predict([down, up]) temp.append(predict[0][0]) temp_ = temp.index(max(temp)) new_list.append([down_img_[1], temp_]) rate.append(max(temp)) # 如果在new_list出现重复的序号,就计算谁的概率大,概率最小那个替换为不同的 for i in range(len(new_list)): for j in range(len(new_list)): if i != j: if new_list[i][1] == new_list[j][1]: if rate[i] > rate[j]: new_list[j][1] = new_list[j][1] + 1 else: new_list[i][1] = new_list[i][1] + 1 select_location = [] for (box, pos) in new_list: x, y, w, h = box[0], box[1], box[2], box[3] x1, y1, x2, y2 = x, y, x + w, y + h select_location.append([x1, y1, x2, y2, pos+1]) cv2.rectangle(img, (x1, y1), (x2, y2), (0, 0, 255)) cv2.putText(img, str(pos+1), (x1, y1), cv2.FONT_HERSHEY_PLAIN, 1, color, thickness) # print(select_location) # 按照最后的位置排序从小到大 select_location = sorted(select_location, key=lambda x_: x_[4]) print(select_location) cv2.imshow('1', img) cv2.waitKey(0)